marma commited on
Commit
507412c
·
1 Parent(s): 23bcd85

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -14
README.md CHANGED
@@ -47,15 +47,16 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
47
  # Preprocessing the datasets.
48
  # We need to read the aduio files as arrays
49
  def speech_file_to_array_fn(batch):
50
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
51
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
52
- \treturn batch
 
53
 
54
  test_dataset = test_dataset.map(speech_file_to_array_fn)
55
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
56
 
57
  with torch.no_grad():
58
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
59
 
60
  predicted_ids = torch.argmax(logits, dim=-1)
61
 
@@ -83,30 +84,30 @@ processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swed
83
  model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
84
  model.to("cuda")
85
 
86
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
87
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
88
 
89
  # Preprocessing the datasets.
90
  # We need to read the aduio files as arrays
91
  def speech_file_to_array_fn(batch):
92
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
93
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
94
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
95
- \treturn batch
96
 
97
  test_dataset = test_dataset.map(speech_file_to_array_fn)
98
 
99
  # Preprocessing the datasets.
100
  # We need to read the aduio files as arrays
101
  def evaluate(batch):
102
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
103
 
104
- \twith torch.no_grad():
105
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
106
 
107
  pred_ids = torch.argmax(logits, dim=-1)
108
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
109
- \treturn batch
110
 
111
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
112
 
 
47
  # Preprocessing the datasets.
48
  # We need to read the aduio files as arrays
49
  def speech_file_to_array_fn(batch):
50
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
51
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
52
+
53
+ return batch
54
 
55
  test_dataset = test_dataset.map(speech_file_to_array_fn)
56
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
57
 
58
  with torch.no_grad():
59
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
60
 
61
  predicted_ids = torch.argmax(logits, dim=-1)
62
 
 
84
  model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
85
  model.to("cuda")
86
 
87
+ chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
88
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
89
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
+ \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
95
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
96
+ \\treturn batch
97
 
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
+ \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
 
105
+ \\twith torch.no_grad():
106
+ \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
107
 
108
  pred_ids = torch.argmax(logits, dim=-1)
109
+ \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
110
+ \\treturn batch
111
 
112
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
113