patrickvonplaten commited on
Commit
23bcd85
·
1 Parent(s): e86ec55

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -19,7 +19,7 @@ model-index:
19
  metrics:
20
  - name: Test WER
21
  type: wer
22
- value: 23.33
23
  ---
24
 
25
  # Wav2Vec2-Large-XLSR-53-Swedish
@@ -47,15 +47,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
47
  # Preprocessing the datasets.
48
  # We need to read the aduio files as arrays
49
  def speech_file_to_array_fn(batch):
50
- speech_array, sampling_rate = torchaudio.load(batch["path"])
51
- batch["speech"] = resampler(speech_array).squeeze().numpy()
52
- return batch
53
 
54
  test_dataset = test_dataset.map(speech_file_to_array_fn)
55
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
56
 
57
  with torch.no_grad():
58
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
59
 
60
  predicted_ids = torch.argmax(logits, dim=-1)
61
 
@@ -83,30 +83,30 @@ processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swed
83
  model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
84
  model.to("cuda")
85
 
86
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
87
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
88
 
89
  # Preprocessing the datasets.
90
  # We need to read the aduio files as arrays
91
  def speech_file_to_array_fn(batch):
92
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
93
- speech_array, sampling_rate = torchaudio.load(batch["path"])
94
- batch["speech"] = resampler(speech_array).squeeze().numpy()
95
- return batch
96
 
97
  test_dataset = test_dataset.map(speech_file_to_array_fn)
98
 
99
  # Preprocessing the datasets.
100
  # We need to read the aduio files as arrays
101
  def evaluate(batch):
102
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
103
 
104
- with torch.no_grad():
105
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
106
 
107
  pred_ids = torch.argmax(logits, dim=-1)
108
- batch["pred_strings"] = processor.batch_decode(pred_ids)
109
- return batch
110
 
111
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
112
 
 
19
  metrics:
20
  - name: Test WER
21
  type: wer
22
+ value: 20.93
23
  ---
24
 
25
  # Wav2Vec2-Large-XLSR-53-Swedish
 
47
  # Preprocessing the datasets.
48
  # We need to read the aduio files as arrays
49
  def speech_file_to_array_fn(batch):
50
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
51
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
52
+ \treturn batch
53
 
54
  test_dataset = test_dataset.map(speech_file_to_array_fn)
55
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
56
 
57
  with torch.no_grad():
58
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
59
 
60
  predicted_ids = torch.argmax(logits, dim=-1)
61
 
 
83
  model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
84
  model.to("cuda")
85
 
86
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
87
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
88
 
89
  # Preprocessing the datasets.
90
  # We need to read the aduio files as arrays
91
  def speech_file_to_array_fn(batch):
92
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
93
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
94
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
95
+ \treturn batch
96
 
97
  test_dataset = test_dataset.map(speech_file_to_array_fn)
98
 
99
  # Preprocessing the datasets.
100
  # We need to read the aduio files as arrays
101
  def evaluate(batch):
102
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
103
 
104
+ \twith torch.no_grad():
105
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
106
 
107
  pred_ids = torch.argmax(logits, dim=-1)
108
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
109
+ \treturn batch
110
 
111
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
112