|
import numpy as np |
|
import numpy.linalg as npla |
|
import cv2 |
|
from core import randomex |
|
|
|
def mls_rigid_deformation(vy, vx, src_pts, dst_pts, alpha=1.0, eps=1e-8): |
|
dst_pts = dst_pts[..., ::-1].astype(np.int16) |
|
src_pts = src_pts[..., ::-1].astype(np.int16) |
|
|
|
src_pts, dst_pts = dst_pts, src_pts |
|
|
|
grow = vx.shape[0] |
|
gcol = vx.shape[1] |
|
ctrls = src_pts.shape[0] |
|
|
|
reshaped_p = src_pts.reshape(ctrls, 2, 1, 1) |
|
reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol))) |
|
|
|
w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha |
|
w /= np.sum(w, axis=0, keepdims=True) |
|
|
|
pstar = np.zeros((2, grow, gcol), np.float32) |
|
for i in range(ctrls): |
|
pstar += w[i] * reshaped_p[i] |
|
|
|
vpstar = reshaped_v - pstar |
|
|
|
reshaped_mul_right = np.concatenate((vpstar[:,None,...], |
|
np.concatenate((vpstar[1:2,None,...],-vpstar[0:1,None,...]), 0) |
|
), axis=1).transpose(2, 3, 0, 1) |
|
|
|
reshaped_q = dst_pts.reshape((ctrls, 2, 1, 1)) |
|
|
|
qstar = np.zeros((2, grow, gcol), np.float32) |
|
for i in range(ctrls): |
|
qstar += w[i] * reshaped_q[i] |
|
|
|
temp = np.zeros((grow, gcol, 2), np.float32) |
|
for i in range(ctrls): |
|
phat = reshaped_p[i] - pstar |
|
qhat = reshaped_q[i] - qstar |
|
|
|
temp += np.matmul(qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1), |
|
|
|
np.matmul( ( w[None, i:i+1,...] * |
|
np.concatenate((phat.reshape(1, 2, grow, gcol), |
|
np.concatenate( (phat[None,1:2], -phat[None,0:1]), 1 )), 0) |
|
).transpose(2, 3, 0, 1), reshaped_mul_right |
|
) |
|
).reshape(grow, gcol, 2) |
|
|
|
temp = temp.transpose(2, 0, 1) |
|
|
|
normed_temp = np.linalg.norm(temp, axis=0, keepdims=True) |
|
normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True) |
|
nan_mask = normed_temp[0]==0 |
|
|
|
transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar |
|
nan_mask_flat = np.flatnonzero(nan_mask) |
|
nan_mask_anti_flat = np.flatnonzero(~nan_mask) |
|
|
|
transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask]) |
|
transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask]) |
|
|
|
return transformers |
|
|
|
def gen_pts(W, H, rnd_state=None): |
|
|
|
if rnd_state is None: |
|
rnd_state = np.random |
|
|
|
min_pts, max_pts = 4, 8 |
|
n_pts = rnd_state.randint(min_pts, max_pts) |
|
|
|
min_radius_per = 0.00 |
|
max_radius_per = 0.10 |
|
pts = [] |
|
|
|
for i in range(n_pts): |
|
while True: |
|
x, y = rnd_state.randint(W), rnd_state.randint(H) |
|
rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per) |
|
|
|
intersect = False |
|
for px,py,prad,_,_ in pts: |
|
|
|
dist = npla.norm([x-px, y-py]) |
|
if dist <= (rad+prad)*2: |
|
intersect = True |
|
break |
|
if intersect: |
|
continue |
|
|
|
angle = rnd_state.rand()*(2*np.pi) |
|
x2 = int(x+np.cos(angle)*W*rad) |
|
y2 = int(y+np.sin(angle)*H*rad) |
|
|
|
break |
|
pts.append( (x,y,rad, x2,y2) ) |
|
|
|
pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] ) |
|
pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] ) |
|
|
|
return pts1, pts2 |
|
|
|
|
|
def gen_warp_params (w, flip=False, rotation_range=[-10,10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None, warp_rnd_state=None ): |
|
if rnd_state is None: |
|
rnd_state = np.random |
|
if warp_rnd_state is None: |
|
warp_rnd_state = np.random |
|
rw = None |
|
if w < 64: |
|
rw = w |
|
w = 64 |
|
|
|
rotation = rnd_state.uniform( rotation_range[0], rotation_range[1] ) |
|
scale = rnd_state.uniform(1 +scale_range[0], 1 +scale_range[1]) |
|
tx = rnd_state.uniform( tx_range[0], tx_range[1] ) |
|
ty = rnd_state.uniform( ty_range[0], ty_range[1] ) |
|
p_flip = flip and rnd_state.randint(10) < 4 |
|
|
|
|
|
cell_size = [ w // (2**i) for i in range(1,4) ] [ warp_rnd_state.randint(3) ] |
|
cell_count = w // cell_size + 1 |
|
grid_points = np.linspace( 0, w, cell_count) |
|
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy() |
|
mapy = mapx.T |
|
mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2), rnd_state=warp_rnd_state )*(cell_size*0.24) |
|
mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2), rnd_state=warp_rnd_state )*(cell_size*0.24) |
|
half_cell_size = cell_size // 2 |
|
mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32) |
|
mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale) |
|
random_transform_mat[:, 2] += (tx*w, ty*w) |
|
|
|
params = dict() |
|
params['mapx'] = mapx |
|
params['mapy'] = mapy |
|
params['rmat'] = random_transform_mat |
|
u_mat = random_transform_mat.copy() |
|
u_mat[:,2] /= w |
|
params['umat'] = u_mat |
|
params['w'] = w |
|
params['rw'] = rw |
|
params['flip'] = p_flip |
|
|
|
return params |
|
|
|
def warp_by_params (params, img, can_warp, can_transform, can_flip, border_replicate, cv2_inter=cv2.INTER_CUBIC): |
|
rw = params['rw'] |
|
|
|
if (can_warp or can_transform) and rw is not None: |
|
img = cv2.resize(img, (64,64), interpolation=cv2_inter) |
|
|
|
if can_warp: |
|
img = cv2.remap(img, params['mapx'], params['mapy'], cv2_inter ) |
|
if can_transform: |
|
img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2_inter ) |
|
|
|
|
|
if (can_warp or can_transform) and rw is not None: |
|
img = cv2.resize(img, (rw,rw), interpolation=cv2_inter) |
|
|
|
if len(img.shape) == 2: |
|
img = img[...,None] |
|
if can_flip and params['flip']: |
|
img = img[:,::-1,...] |
|
return img |