File size: 6,847 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import numpy.linalg as npla
import cv2
from core import randomex

def mls_rigid_deformation(vy, vx, src_pts, dst_pts, alpha=1.0, eps=1e-8):
    dst_pts = dst_pts[..., ::-1].astype(np.int16)
    src_pts = src_pts[..., ::-1].astype(np.int16)

    src_pts, dst_pts = dst_pts, src_pts

    grow = vx.shape[0]
    gcol = vx.shape[1]
    ctrls = src_pts.shape[0]

    reshaped_p = src_pts.reshape(ctrls, 2, 1, 1)
    reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol)))

    w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha
    w /= np.sum(w, axis=0, keepdims=True)

    pstar = np.zeros((2, grow, gcol), np.float32)
    for i in range(ctrls):
        pstar += w[i] * reshaped_p[i]

    vpstar = reshaped_v - pstar

    reshaped_mul_right = np.concatenate((vpstar[:,None,...],
                                         np.concatenate((vpstar[1:2,None,...],-vpstar[0:1,None,...]), 0)
                                         ), axis=1).transpose(2, 3, 0, 1)

    reshaped_q = dst_pts.reshape((ctrls, 2, 1, 1))
    
    qstar = np.zeros((2, grow, gcol), np.float32)
    for i in range(ctrls):
        qstar += w[i] * reshaped_q[i]   
        
    temp = np.zeros((grow, gcol, 2), np.float32)
    for i in range(ctrls):
        phat = reshaped_p[i] - pstar
        qhat = reshaped_q[i] - qstar

        temp += np.matmul(qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1), 
                          
                          np.matmul( ( w[None, i:i+1,...] *
                                       np.concatenate((phat.reshape(1, 2, grow, gcol),
                                                       np.concatenate( (phat[None,1:2], -phat[None,0:1]), 1 )), 0)
                                      ).transpose(2, 3, 0, 1), reshaped_mul_right
                                   )
                         ).reshape(grow, gcol, 2)

    temp = temp.transpose(2, 0, 1)

    normed_temp = np.linalg.norm(temp, axis=0, keepdims=True)
    normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True)
    nan_mask = normed_temp[0]==0

    transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar
    nan_mask_flat = np.flatnonzero(nan_mask)
    nan_mask_anti_flat = np.flatnonzero(~nan_mask)

    transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask])
    transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask])

    return transformers    

def gen_pts(W, H, rnd_state=None):
    
    if rnd_state is None:
        rnd_state = np.random
        
    min_pts, max_pts = 4, 8
    n_pts = rnd_state.randint(min_pts, max_pts)
    
    min_radius_per = 0.00
    max_radius_per = 0.10
    pts = []
    
    for i in range(n_pts):
        while True:
            x, y = rnd_state.randint(W), rnd_state.randint(H)
            rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per)
            
            intersect = False
            for px,py,prad,_,_ in pts:
                
                dist = npla.norm([x-px, y-py])
                if dist <= (rad+prad)*2:
                    intersect = True
                    break
            if intersect:
                continue   
            
            angle = rnd_state.rand()*(2*np.pi)
            x2 = int(x+np.cos(angle)*W*rad)
            y2 = int(y+np.sin(angle)*H*rad)
            
            break
        pts.append( (x,y,rad, x2,y2) )
        
    pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] )
    pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] )
    
    return pts1, pts2
    
    
def gen_warp_params (w, flip=False, rotation_range=[-10,10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None, warp_rnd_state=None  ):
    if rnd_state is None:
        rnd_state = np.random
    if warp_rnd_state is None:
        warp_rnd_state = np.random
    rw = None
    if w < 64:        
        rw = w
        w = 64
        
    rotation = rnd_state.uniform( rotation_range[0], rotation_range[1] )
    scale = rnd_state.uniform(1 +scale_range[0], 1 +scale_range[1])
    tx = rnd_state.uniform( tx_range[0], tx_range[1] )
    ty = rnd_state.uniform( ty_range[0], ty_range[1] )
    p_flip = flip and rnd_state.randint(10) < 4

    #random warp V1
    cell_size = [ w // (2**i) for i in range(1,4) ] [ warp_rnd_state.randint(3) ]
    cell_count = w // cell_size + 1
    grid_points = np.linspace( 0, w, cell_count)
    mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
    mapy = mapx.T
    mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2), rnd_state=warp_rnd_state )*(cell_size*0.24)
    mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2), rnd_state=warp_rnd_state )*(cell_size*0.24)
    half_cell_size = cell_size // 2
    mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
    mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
    ##############
    
    # random warp V2
    # pts1, pts2 = gen_pts(w, w, rnd_state)
    # gridX = np.arange(w, dtype=np.int16)
    # gridY = np.arange(w, dtype=np.int16)
    # vy, vx = np.meshgrid(gridX, gridY)
    # drigid = mls_rigid_deformation(vy, vx, pts1, pts2)
    # mapy, mapx = drigid.astype(np.float32)
    ################
    
    #random transform
    random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale)
    random_transform_mat[:, 2] += (tx*w, ty*w)

    params = dict()
    params['mapx'] = mapx
    params['mapy'] = mapy
    params['rmat'] = random_transform_mat
    u_mat = random_transform_mat.copy()
    u_mat[:,2] /= w
    params['umat'] = u_mat
    params['w'] = w
    params['rw'] = rw
    params['flip'] = p_flip

    return params

def warp_by_params (params, img, can_warp, can_transform, can_flip, border_replicate, cv2_inter=cv2.INTER_CUBIC):
    rw = params['rw']
    
    if (can_warp or can_transform) and rw is not None:
        img = cv2.resize(img, (64,64), interpolation=cv2_inter)
        
    if can_warp:
        img = cv2.remap(img, params['mapx'], params['mapy'], cv2_inter )
    if can_transform:
        img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2_inter )
    
    
    if (can_warp or can_transform) and rw is not None:
        img = cv2.resize(img, (rw,rw), interpolation=cv2_inter)
    
    if len(img.shape) == 2:
        img = img[...,None]
    if can_flip and params['flip']:
        img = img[:,::-1,...]
    return img