AsA / model.py
Jabbari's picture
Create model.py
332a2d7
raw
history blame
757 Bytes
from transformers import AutoModelForSequenceClassification,AutoTokenizer
#import tensorflow as tf
#print(tf.__version__)
# replace "path/to/model/directory" with the path to the directory containing the model files
tokenizer = AutoTokenizer.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis")
model = AutoModelForSequenceClassification.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis")
def predict_sentiment(text):
# Tokenize input text
inputs = tokenizer(text, return_tensors="pt")
# Pass the tokenized inputs through the model
outputs = model(**inputs)
# Get predicted sentiment
predictions = outputs.logits.argmax(dim=1)
sentiment = "Negative" if predictions.item() == 1 else "Positive"
return sentiment