from transformers import AutoModelForSequenceClassification,AutoTokenizer | |
#import tensorflow as tf | |
#print(tf.__version__) | |
# replace "path/to/model/directory" with the path to the directory containing the model files | |
tokenizer = AutoTokenizer.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis") | |
model = AutoModelForSequenceClassification.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis") | |
def predict_sentiment(text): | |
# Tokenize input text | |
inputs = tokenizer(text, return_tensors="pt") | |
# Pass the tokenized inputs through the model | |
outputs = model(**inputs) | |
# Get predicted sentiment | |
predictions = outputs.logits.argmax(dim=1) | |
sentiment = "Negative" if predictions.item() == 1 else "Positive" | |
return sentiment | |