Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer
|
| 2 |
+
#import tensorflow as tf
|
| 3 |
+
#print(tf.__version__)
|
| 4 |
+
# replace "path/to/model/directory" with the path to the directory containing the model files
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis")
|
| 6 |
+
model = AutoModelForSequenceClassification.from_pretrained("ALANZI/imamu_arabic_sentimentAnalysis")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def predict_sentiment(text):
|
| 10 |
+
# Tokenize input text
|
| 11 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 12 |
+
|
| 13 |
+
# Pass the tokenized inputs through the model
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
+
|
| 16 |
+
# Get predicted sentiment
|
| 17 |
+
predictions = outputs.logits.argmax(dim=1)
|
| 18 |
+
sentiment = "Negative" if predictions.item() == 1 else "Positive"
|
| 19 |
+
|
| 20 |
+
return sentiment
|