|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- Qwen/Qwen2-VL-7B-Instruct |
|
--- |
|
|
|
# Qwen2-VL-7B-Instruct-GermanTrafficSigns-LoRA |
|
|
|
## Introduction |
|
|
|
This is Devin Ullerick's JHU Spring 2025 Independent Study project that fine-tuned the Qwen2-VL-7B-Instruct VLM |
|
using a dataset of German street images and street signs. |
|
|
|
Original Kaggle dataset used for fine-tuning: https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-dataset-in-yolo-format |
|
|
|
Fine-tuned dataset image captions were generated using GTP-4o mini. |
|
|
|
## Quickstart |
|
|
|
```python |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
# default: Load the model on the available device(s) |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. |
|
# model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
# "Qwen/Qwen2-VL-7B-Instruct", |
|
# torch_dtype=torch.bfloat16, |
|
# attn_implementation="flash_attention_2", |
|
# device_map="auto", |
|
# ) |
|
|
|
# default processer |
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") |
|
|
|
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. |
|
# min_pixels = 256*28*28 |
|
# max_pixels = 1280*28*28 |
|
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", |
|
}, |
|
{"type": "text", "text": "Describe this image."}, |
|
], |
|
} |
|
] |
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |
|
|
|
<summary>Multi image inference</summary> |
|
|
|
```python |
|
# Messages containing multiple images and a text query |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": "file:///path/to/image1.jpg"}, |
|
{"type": "image", "image": "file:///path/to/image2.jpg"}, |
|
{"type": "text", "text": "Identify the similarities between these images."}, |
|
], |
|
} |
|
] |
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
# Inference |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |
|
</details> |