metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_tts
results: []
speecht5_tts
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 15000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 2.34 | 250 | 0.5148 |
0.5893 | 4.67 | 500 | 0.3786 |
0.5893 | 7.01 | 750 | 0.3621 |
0.4015 | 9.35 | 1000 | 0.3600 |
0.4015 | 11.68 | 1250 | 0.3701 |
0.3739 | 14.02 | 1500 | 0.3612 |
0.3739 | 16.36 | 1750 | 0.3626 |
0.3634 | 18.69 | 2000 | 0.3499 |
0.3634 | 21.03 | 2250 | 0.3549 |
0.3499 | 23.36 | 2500 | 0.3600 |
0.3499 | 25.7 | 2750 | 0.3533 |
0.3428 | 28.04 | 3000 | 0.3652 |
0.3428 | 30.37 | 3250 | 0.3541 |
0.3407 | 32.71 | 3500 | 0.3579 |
0.3407 | 35.05 | 3750 | 0.3550 |
0.3368 | 37.38 | 4000 | 0.3624 |
0.3368 | 39.72 | 4250 | 0.3621 |
0.3315 | 42.06 | 4500 | 0.3577 |
0.3315 | 44.39 | 4750 | 0.3620 |
0.3305 | 46.73 | 5000 | 0.3665 |
0.3305 | 49.07 | 5250 | 0.3641 |
0.3273 | 51.4 | 5500 | 0.3563 |
0.3273 | 53.74 | 5750 | 0.3579 |
0.3228 | 56.07 | 6000 | 0.3615 |
0.3228 | 58.41 | 6250 | 0.3606 |
0.3227 | 60.75 | 6500 | 0.3647 |
0.3227 | 63.08 | 6750 | 0.3647 |
0.3183 | 65.42 | 7000 | 0.3619 |
0.3183 | 67.76 | 7250 | 0.3786 |
0.3184 | 70.09 | 7500 | 0.3731 |
0.3184 | 72.43 | 7750 | 0.3630 |
0.3177 | 74.77 | 8000 | 0.3647 |
0.3177 | 77.1 | 8250 | 0.3668 |
0.3159 | 79.44 | 8500 | 0.3624 |
0.3159 | 81.78 | 8750 | 0.3742 |
0.3129 | 84.11 | 9000 | 0.3722 |
0.3129 | 86.45 | 9250 | 0.3755 |
0.3124 | 88.79 | 9500 | 0.3693 |
0.3124 | 91.12 | 9750 | 0.3707 |
0.3094 | 93.46 | 10000 | 0.3808 |
0.3094 | 95.79 | 10250 | 0.3696 |
0.3116 | 98.13 | 10500 | 0.3773 |
0.3116 | 100.47 | 10750 | 0.3796 |
0.3076 | 102.8 | 11000 | 0.3705 |
0.3076 | 105.14 | 11250 | 0.3718 |
0.3104 | 107.48 | 11500 | 0.3792 |
0.3104 | 109.81 | 11750 | 0.3714 |
0.3078 | 112.15 | 12000 | 0.3765 |
0.3078 | 114.49 | 12250 | 0.3803 |
0.3064 | 116.82 | 12500 | 0.3792 |
0.3064 | 119.16 | 12750 | 0.3803 |
0.3087 | 121.5 | 13000 | 0.3806 |
0.3087 | 123.83 | 13250 | 0.3821 |
0.3064 | 126.17 | 13500 | 0.3795 |
0.3064 | 128.5 | 13750 | 0.3766 |
0.3066 | 130.84 | 14000 | 0.3780 |
0.3066 | 133.18 | 14250 | 0.3858 |
0.3081 | 135.51 | 14500 | 0.3812 |
0.3081 | 137.85 | 14750 | 0.3829 |
0.3064 | 140.19 | 15000 | 0.3812 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.14.1