speecht5_tts / README.md
JBZhang2342's picture
Model save
fd36feb
|
raw
history blame
4.5 kB
metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
model-index:
  - name: speecht5_tts
    results: []

speecht5_tts

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 2.34 250 0.5148
0.5893 4.67 500 0.3786
0.5893 7.01 750 0.3621
0.4015 9.35 1000 0.3600
0.4015 11.68 1250 0.3701
0.3739 14.02 1500 0.3612
0.3739 16.36 1750 0.3626
0.3634 18.69 2000 0.3499
0.3634 21.03 2250 0.3549
0.3499 23.36 2500 0.3600
0.3499 25.7 2750 0.3533
0.3428 28.04 3000 0.3652
0.3428 30.37 3250 0.3541
0.3407 32.71 3500 0.3579
0.3407 35.05 3750 0.3550
0.3368 37.38 4000 0.3624
0.3368 39.72 4250 0.3621
0.3315 42.06 4500 0.3577
0.3315 44.39 4750 0.3620
0.3305 46.73 5000 0.3665
0.3305 49.07 5250 0.3641
0.3273 51.4 5500 0.3563
0.3273 53.74 5750 0.3579
0.3228 56.07 6000 0.3615
0.3228 58.41 6250 0.3606
0.3227 60.75 6500 0.3647
0.3227 63.08 6750 0.3647
0.3183 65.42 7000 0.3619
0.3183 67.76 7250 0.3786
0.3184 70.09 7500 0.3731
0.3184 72.43 7750 0.3630
0.3177 74.77 8000 0.3647
0.3177 77.1 8250 0.3668
0.3159 79.44 8500 0.3624
0.3159 81.78 8750 0.3742
0.3129 84.11 9000 0.3722
0.3129 86.45 9250 0.3755
0.3124 88.79 9500 0.3693
0.3124 91.12 9750 0.3707
0.3094 93.46 10000 0.3808
0.3094 95.79 10250 0.3696
0.3116 98.13 10500 0.3773
0.3116 100.47 10750 0.3796
0.3076 102.8 11000 0.3705
0.3076 105.14 11250 0.3718
0.3104 107.48 11500 0.3792
0.3104 109.81 11750 0.3714
0.3078 112.15 12000 0.3765
0.3078 114.49 12250 0.3803
0.3064 116.82 12500 0.3792
0.3064 119.16 12750 0.3803
0.3087 121.5 13000 0.3806
0.3087 123.83 13250 0.3821
0.3064 126.17 13500 0.3795
0.3064 128.5 13750 0.3766
0.3066 130.84 14000 0.3780
0.3066 133.18 14250 0.3858
0.3081 135.51 14500 0.3812
0.3081 137.85 14750 0.3829
0.3064 140.19 15000 0.3812

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.14.1