metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_tts
results: []
speecht5_tts
This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5139
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.92 | 250 | 0.6150 |
0.7483 | 3.85 | 500 | 0.5494 |
0.7483 | 5.77 | 750 | 0.5001 |
0.5482 | 7.69 | 1000 | 0.4861 |
0.5482 | 9.62 | 1250 | 0.4792 |
0.502 | 11.54 | 1500 | 0.4786 |
0.502 | 13.46 | 1750 | 0.4804 |
0.4794 | 15.38 | 2000 | 0.4803 |
0.4794 | 17.31 | 2250 | 0.4724 |
0.4685 | 19.23 | 2500 | 0.4801 |
0.4685 | 21.15 | 2750 | 0.4740 |
0.4553 | 23.08 | 3000 | 0.4840 |
0.4553 | 25.0 | 3250 | 0.4857 |
0.4567 | 26.92 | 3500 | 0.4792 |
0.4567 | 28.85 | 3750 | 0.4831 |
0.445 | 30.77 | 4000 | 0.4884 |
0.445 | 32.69 | 4250 | 0.4845 |
0.4412 | 34.62 | 4500 | 0.4944 |
0.4412 | 36.54 | 4750 | 0.4940 |
0.4373 | 38.46 | 5000 | 0.4863 |
0.4373 | 40.38 | 5250 | 0.4899 |
0.4353 | 42.31 | 5500 | 0.4954 |
0.4353 | 44.23 | 5750 | 0.5005 |
0.4265 | 46.15 | 6000 | 0.4994 |
0.4265 | 48.08 | 6250 | 0.4918 |
0.4285 | 50.0 | 6500 | 0.5022 |
0.4285 | 51.92 | 6750 | 0.4939 |
0.4209 | 53.85 | 7000 | 0.4989 |
0.4209 | 55.77 | 7250 | 0.4959 |
0.4206 | 57.69 | 7500 | 0.5013 |
0.4206 | 59.62 | 7750 | 0.5061 |
0.4189 | 61.54 | 8000 | 0.5092 |
0.4189 | 63.46 | 8250 | 0.5084 |
0.422 | 65.38 | 8500 | 0.5116 |
0.422 | 67.31 | 8750 | 0.5115 |
0.415 | 69.23 | 9000 | 0.5100 |
0.415 | 71.15 | 9250 | 0.5121 |
0.4179 | 73.08 | 9500 | 0.5112 |
0.4179 | 75.0 | 9750 | 0.5115 |
0.4139 | 76.92 | 10000 | 0.5139 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.14.1