speecht5_tts / README.md
JBZhang2342's picture
Model save
0023632
|
raw
history blame
4.56 kB
metadata
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
model-index:
  - name: speecht5_tts
    results: []

speecht5_tts

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 31.25 250 0.8090
0.7576 62.5 500 0.6545
0.7576 93.75 750 0.6266
0.4719 125.0 1000 0.6372
0.4719 156.25 1250 0.6317
0.403 187.5 1500 0.6457
0.403 218.75 1750 0.6571
0.374 250.0 2000 0.6805
0.374 281.25 2250 0.6814
0.3564 312.5 2500 0.6814
0.3564 343.75 2750 0.6956
0.342 375.0 3000 0.6769
0.342 406.25 3250 0.7000
0.3339 437.5 3500 0.7052
0.3339 468.75 3750 0.7104
0.3205 500.0 4000 0.7095
0.3205 531.25 4250 0.7120
0.3112 562.5 4500 0.7194
0.3112 593.75 4750 0.7363
0.3045 625.0 5000 0.7252
0.3045 656.25 5250 0.7003
0.3067 687.5 5500 0.7176
0.3067 718.75 5750 0.7513
0.2938 750.0 6000 0.7403
0.2938 781.25 6250 0.7180
0.2894 812.5 6500 0.7569
0.2894 843.75 6750 0.7398
0.2886 875.0 7000 0.7384
0.2886 906.25 7250 0.7363
0.2877 937.5 7500 0.7550
0.2877 968.75 7750 0.7350
0.2822 1000.0 8000 0.8012
0.2822 1031.25 8250 0.7509
0.2808 1062.5 8500 0.7544
0.2808 1093.75 8750 0.7851
0.2746 1125.0 9000 0.7283
0.2746 1156.25 9250 0.7559
0.27 1187.5 9500 0.7449
0.27 1218.75 9750 0.7496
0.2693 1250.0 10000 0.7375
0.2693 1281.25 10250 0.7723
0.2674 1312.5 10500 0.7632
0.2674 1343.75 10750 0.7825
0.2678 1375.0 11000 0.7645
0.2678 1406.25 11250 0.7502
0.269 1437.5 11500 0.7762
0.269 1468.75 11750 0.7500
0.2642 1500.0 12000 0.7503
0.2642 1531.25 12250 0.7460
0.2618 1562.5 12500 0.7512
0.2618 1593.75 12750 0.7889
0.2642 1625.0 13000 0.7578
0.2642 1656.25 13250 0.7678
0.2628 1687.5 13500 0.7638
0.2628 1718.75 13750 0.7721
0.2612 1750.0 14000 0.7531
0.2612 1781.25 14250 0.7924
0.2555 1812.5 14500 0.7882
0.2555 1843.75 14750 0.7841
0.2596 1875.0 15000 0.7779

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.14.1