xlsr300m_cv_8.0_nl

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F

model_id = "Iskaj/xlsr300m_cv_8.0_nl"

sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True))

sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()

model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)

inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
  logits = model(**inputs).logits
  predicted_ids = torch.argmax(logits, dim=-1)
  transcription = processor.batch_decode(predicted_ids)

transcription[0].lower()
#'het kontine schip lag aangemeert in de aven'
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train Iskaj/xlsr300m_cv_8.0_nl

Evaluation results