Update README.md
Browse files
README.md
CHANGED
|
@@ -21,27 +21,59 @@ model-index:
|
|
| 21 |
verified: false
|
| 22 |
---
|
| 23 |
|
| 24 |
-
# SAC Agent for FetchPickAndPlace-v4
|
| 25 |
|
| 26 |
-
## Model
|
| 27 |
|
| 28 |
-
This repository contains a Soft Actor-Critic (SAC) agent trained on the `FetchPickAndPlace-v4` environment
|
| 29 |
|
| 30 |
- **Algorithm:** Soft Actor-Critic (SAC)
|
| 31 |
- **Replay Buffer:** Hindsight Experience Replay (HER)
|
| 32 |
-
- **Environment:** FetchPickAndPlace-v4 (
|
| 33 |
- **Framework:** Stable Baselines3
|
| 34 |
|
| 35 |
## Training Details
|
| 36 |
|
| 37 |
- **Total Timesteps:** 500,000
|
| 38 |
-
- **
|
| 39 |
-
- **
|
| 40 |
- **Seed:** 42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
## Usage
|
| 43 |
|
| 44 |
-
To load and use the model:
|
| 45 |
|
| 46 |
```python
|
| 47 |
from stable_baselines3 import SAC
|
|
@@ -49,7 +81,7 @@ import gymnasium as gym
|
|
| 49 |
import gymnasium_robotics
|
| 50 |
|
| 51 |
env = gym.make("FetchPickAndPlace-v4", render_mode="rgb_array")
|
| 52 |
-
model = SAC.load("path/to/
|
| 53 |
|
| 54 |
obs, info = env.reset()
|
| 55 |
done = False
|
|
@@ -59,23 +91,86 @@ while not done:
|
|
| 59 |
env.render()
|
| 60 |
```
|
| 61 |
|
| 62 |
-
## Evaluation
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
## Citation
|
| 73 |
|
| 74 |
If you use this model, please cite:
|
| 75 |
|
| 76 |
```
|
| 77 |
-
@misc{
|
| 78 |
-
title={SAC Agent for FetchPickAndPlace-v4},
|
| 79 |
author={IntelliGrow},
|
| 80 |
year={2025},
|
| 81 |
howpublished={Hugging Face Hub},
|
|
@@ -88,3 +183,5 @@ If you use this model, please cite:
|
|
| 88 |
MIT License
|
| 89 |
|
| 90 |
---
|
|
|
|
|
|
|
|
|
| 21 |
verified: false
|
| 22 |
---
|
| 23 |
|
| 24 |
+
# SAC + HER Agent for FetchPickAndPlace-v4
|
| 25 |
|
| 26 |
+
## Model Overview
|
| 27 |
|
| 28 |
+
This repository contains a Soft Actor-Critic (SAC) agent trained with Hindsight Experience Replay (HER) on the `FetchPickAndPlace-v4` environment from `gymnasium-robotics`. The agent learns to pick and place objects using sparse or dense rewards, and is suitable for robotic manipulation research.
|
| 29 |
|
| 30 |
- **Algorithm:** Soft Actor-Critic (SAC)
|
| 31 |
- **Replay Buffer:** Hindsight Experience Replay (HER)
|
| 32 |
+
- **Environment:** FetchPickAndPlace-v4 (`gymnasium-robotics`)
|
| 33 |
- **Framework:** Stable Baselines3
|
| 34 |
|
| 35 |
## Training Details
|
| 36 |
|
| 37 |
- **Total Timesteps:** 500,000
|
| 38 |
+
- **Evaluation Frequency:** Every 2,000 steps (15 episodes per eval)
|
| 39 |
+
- **Checkpoint Frequency:** Every 50,000 steps (model + replay buffer)
|
| 40 |
- **Seed:** 42
|
| 41 |
+
- **Dense Shaping:** `False` (can be enabled with wrapper)
|
| 42 |
+
- **Device:** CUDA if available, otherwise auto
|
| 43 |
+
|
| 44 |
+
### Hyperparameters
|
| 45 |
+
|
| 46 |
+
| Parameter | Value |
|
| 47 |
+
|--------------------------|----------------------|
|
| 48 |
+
| Algorithm | SAC |
|
| 49 |
+
| Policy | MultiInputPolicy |
|
| 50 |
+
| Replay Buffer | HER |
|
| 51 |
+
| n_sampled_goal | 4 |
|
| 52 |
+
| goal_selection_strategy | future |
|
| 53 |
+
| Batch Size | 512 |
|
| 54 |
+
| Buffer Size | 1,000,000 |
|
| 55 |
+
| Learning Rate | 1e-3 |
|
| 56 |
+
| Gamma | 0.95 |
|
| 57 |
+
| Tau | 0.05 |
|
| 58 |
+
| Entropy Coefficient | auto |
|
| 59 |
+
| Train Frequency | 1 step |
|
| 60 |
+
| Gradient Steps | 1 |
|
| 61 |
+
| Tensorboard Log | logs_pnp_sac_her/tb |
|
| 62 |
+
| Seed | 42 |
|
| 63 |
+
| Device | CUDA/Auto |
|
| 64 |
+
| Dense Shaping | False (default) |
|
| 65 |
+
|
| 66 |
+
## Files
|
| 67 |
+
|
| 68 |
+
- `sac_her_pnp.zip`: Final trained SAC model
|
| 69 |
+
- `ckpt_sac_her_250000_steps.zip`: Latest checkpoint
|
| 70 |
+
- `replay_buffer.pkl`: Replay buffer for continued training
|
| 71 |
+
- `replay.mp4`: Replay video of agent performance (manual generation recommended)
|
| 72 |
+
- `README.md`: This model card
|
| 73 |
|
| 74 |
## Usage
|
| 75 |
|
| 76 |
+
To load and use the model for inference:
|
| 77 |
|
| 78 |
```python
|
| 79 |
from stable_baselines3 import SAC
|
|
|
|
| 81 |
import gymnasium_robotics
|
| 82 |
|
| 83 |
env = gym.make("FetchPickAndPlace-v4", render_mode="rgb_array")
|
| 84 |
+
model = SAC.load("path/to/sac_her_pnp.zip", env=env)
|
| 85 |
|
| 86 |
obs, info = env.reset()
|
| 87 |
done = False
|
|
|
|
| 91 |
env.render()
|
| 92 |
```
|
| 93 |
|
| 94 |
+
## Evaluation
|
| 95 |
|
| 96 |
+
To evaluate the agent over multiple episodes:
|
| 97 |
|
| 98 |
+
```python
|
| 99 |
+
from stable_baselines3 import SAC
|
| 100 |
+
import gymnasium as gym
|
| 101 |
+
import gymnasium_robotics
|
| 102 |
+
|
| 103 |
+
env = gym.make("FetchPickAndPlace-v4", render_mode="human")
|
| 104 |
+
model = SAC.load("path/to/sac_her_pnp.zip", env=env)
|
| 105 |
+
|
| 106 |
+
num_episodes = 10
|
| 107 |
+
for ep in range(num_episodes):
|
| 108 |
+
obs, info = env.reset()
|
| 109 |
+
done = False
|
| 110 |
+
truncated = False
|
| 111 |
+
episode_reward = 0
|
| 112 |
+
while not (done or truncated):
|
| 113 |
+
action, _ = model.predict(obs, deterministic=True)
|
| 114 |
+
obs, reward, done, truncated, info = env.step(action)
|
| 115 |
+
env.render()
|
| 116 |
+
episode_reward += reward
|
| 117 |
+
print(f"Episode {ep+1} reward: {episode_reward}")
|
| 118 |
+
env.close()
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
## Replay Video
|
| 122 |
+
|
| 123 |
+
If `replay.mp4` is not present, you can manually generate it:
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
import gymnasium as gym
|
| 127 |
+
import gymnasium_robotics
|
| 128 |
+
from stable_baselines3 import SAC
|
| 129 |
+
import moviepy.editor as mpy
|
| 130 |
+
|
| 131 |
+
env = gym.make("FetchPickAndPlace-v4", render_mode="rgb_array")
|
| 132 |
+
model = SAC.load("path/to/sac_her_pnp.zip", env=env)
|
| 133 |
+
|
| 134 |
+
frames = []
|
| 135 |
+
obs, info = env.reset()
|
| 136 |
+
done = False
|
| 137 |
+
truncated = False
|
| 138 |
+
step = 0
|
| 139 |
+
max_steps = 1000
|
| 140 |
+
|
| 141 |
+
while not (done or truncated) and step < max_steps:
|
| 142 |
+
frame = env.render()
|
| 143 |
+
frames.append(frame)
|
| 144 |
+
action, _ = model.predict(obs, deterministic=True)
|
| 145 |
+
obs, reward, done, truncated, info = env.step(action)
|
| 146 |
+
step += 1
|
| 147 |
+
|
| 148 |
+
env.close()
|
| 149 |
+
clip = mpy.ImageSequenceClip(frames, fps=30)
|
| 150 |
+
clip.write_videofile("replay.mp4", codec="libx264")
|
| 151 |
+
```
|
| 152 |
|
| 153 |
+
## Continued Training
|
| 154 |
+
|
| 155 |
+
To continue training from a checkpoint:
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
from stable_baselines3 import SAC
|
| 159 |
+
import gymnasium as gym
|
| 160 |
+
import gymnasium_robotics
|
| 161 |
+
|
| 162 |
+
env = gym.make("FetchPickAndPlace-v4", render_mode=None)
|
| 163 |
+
model = SAC.load("logs_pnp_sac_her/ckpt_sac_her_250000_steps.zip", env=env)
|
| 164 |
+
model.learn(total_timesteps=500_000, reset_num_timesteps=False)
|
| 165 |
+
```
|
| 166 |
|
| 167 |
## Citation
|
| 168 |
|
| 169 |
If you use this model, please cite:
|
| 170 |
|
| 171 |
```
|
| 172 |
+
@misc{IntelliGrow_FetchPickAndPlace_SAC_HER,
|
| 173 |
+
title={SAC + HER Agent for FetchPickAndPlace-v4},
|
| 174 |
author={IntelliGrow},
|
| 175 |
year={2025},
|
| 176 |
howpublished={Hugging Face Hub},
|
|
|
|
| 183 |
MIT License
|
| 184 |
|
| 185 |
---
|
| 186 |
+
|
| 187 |
+
**Contact:** For questions or issues, open an issue on the [Hugging Face repository](https://huggingface.co/IntelliGrow/FetchPickAndPlace-v4).
|