Update README.md
Browse files
README.md
CHANGED
@@ -1,37 +1,90 @@
|
|
1 |
-
---
|
2 |
-
library_name: stable-baselines3
|
3 |
-
tags:
|
4 |
-
- FetchPickAndPlace-v4
|
5 |
-
- deep-reinforcement-learning
|
6 |
-
- reinforcement-learning
|
7 |
-
- stable-baselines3
|
8 |
-
model-index:
|
9 |
-
- name: SAC
|
10 |
-
results:
|
11 |
-
- task:
|
12 |
-
type: reinforcement-learning
|
13 |
-
name: reinforcement-learning
|
14 |
-
dataset:
|
15 |
-
name: FetchPickAndPlace-v4
|
16 |
-
type: FetchPickAndPlace-v4
|
17 |
-
metrics:
|
18 |
-
- type: mean_reward
|
19 |
-
value: -9.70 +/- 4.17
|
20 |
-
name: mean_reward
|
21 |
-
verified: false
|
22 |
-
---
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FetchPickAndPlace-v4
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FetchPickAndPlace-v4
|
16 |
+
type: FetchPickAndPlace-v4
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -9.70 +/- 4.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# SAC Agent for FetchPickAndPlace-v4
|
25 |
+
|
26 |
+
## Model Description
|
27 |
+
|
28 |
+
This repository contains a Soft Actor-Critic (SAC) agent trained on the `FetchPickAndPlace-v4` environment using Hindsight Experience Replay (HER). The agent learns to pick and place objects in a simulated robotic environment.
|
29 |
+
|
30 |
+
- **Algorithm:** Soft Actor-Critic (SAC)
|
31 |
+
- **Replay Buffer:** Hindsight Experience Replay (HER)
|
32 |
+
- **Environment:** FetchPickAndPlace-v4 (from gymnasium-robotics)
|
33 |
+
- **Framework:** Stable Baselines3
|
34 |
+
|
35 |
+
## Training Details
|
36 |
+
|
37 |
+
- **Total Timesteps:** 500,000
|
38 |
+
- **Dense Shaping:** Disabled
|
39 |
+
- **Evaluation:** Success rate and mean reward measured every 2,000 steps
|
40 |
+
- **Seed:** 42
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
To load and use the model:
|
45 |
+
|
46 |
+
```python
|
47 |
+
from stable_baselines3 import SAC
|
48 |
+
import gymnasium as gym
|
49 |
+
import gymnasium_robotics
|
50 |
+
|
51 |
+
env = gym.make("FetchPickAndPlace-v4", render_mode="rgb_array")
|
52 |
+
model = SAC.load("path/to/sac-FetchPickAndPlace-v4.zip", env=env)
|
53 |
+
|
54 |
+
obs, info = env.reset()
|
55 |
+
done = False
|
56 |
+
while not done:
|
57 |
+
action, _ = model.predict(obs, deterministic=True)
|
58 |
+
obs, reward, done, truncated, info = env.step(action)
|
59 |
+
env.render()
|
60 |
+
```
|
61 |
+
|
62 |
+
## Evaluation & Replay
|
63 |
+
|
64 |
+
A replay video (`replay.mp4`) is included to visualize the agent's performance over two episodes.
|
65 |
+
|
66 |
+
## Files
|
67 |
+
|
68 |
+
- `sac-FetchPickAndPlace-v4.zip`: Trained SAC model
|
69 |
+
- `replay.mp4`: Agent replay video
|
70 |
+
- `README.md`: Model card
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
|
74 |
+
If you use this model, please cite:
|
75 |
+
|
76 |
+
```
|
77 |
+
@misc{IntelliGrow_FetchPickAndPlace_SAC,
|
78 |
+
title={SAC Agent for FetchPickAndPlace-v4},
|
79 |
+
author={IntelliGrow},
|
80 |
+
year={2025},
|
81 |
+
howpublished={Hugging Face Hub},
|
82 |
+
url={https://huggingface.co/IntelliGrow/FetchPickAndPlace-v4}
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
## License
|
87 |
+
|
88 |
+
MIT License
|
89 |
+
|
90 |
+
---
|