Update README.md
Browse files
README.md
CHANGED
|
@@ -1,37 +1,90 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: stable-baselines3
|
| 3 |
-
tags:
|
| 4 |
-
- FetchPickAndPlace-v4
|
| 5 |
-
- deep-reinforcement-learning
|
| 6 |
-
- reinforcement-learning
|
| 7 |
-
- stable-baselines3
|
| 8 |
-
model-index:
|
| 9 |
-
- name: SAC
|
| 10 |
-
results:
|
| 11 |
-
- task:
|
| 12 |
-
type: reinforcement-learning
|
| 13 |
-
name: reinforcement-learning
|
| 14 |
-
dataset:
|
| 15 |
-
name: FetchPickAndPlace-v4
|
| 16 |
-
type: FetchPickAndPlace-v4
|
| 17 |
-
metrics:
|
| 18 |
-
- type: mean_reward
|
| 19 |
-
value: -9.70 +/- 4.17
|
| 20 |
-
name: mean_reward
|
| 21 |
-
verified: false
|
| 22 |
-
---
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- FetchPickAndPlace-v4
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: SAC
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: FetchPickAndPlace-v4
|
| 16 |
+
type: FetchPickAndPlace-v4
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -9.70 +/- 4.17
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# SAC Agent for FetchPickAndPlace-v4
|
| 25 |
+
|
| 26 |
+
## Model Description
|
| 27 |
+
|
| 28 |
+
This repository contains a Soft Actor-Critic (SAC) agent trained on the `FetchPickAndPlace-v4` environment using Hindsight Experience Replay (HER). The agent learns to pick and place objects in a simulated robotic environment.
|
| 29 |
+
|
| 30 |
+
- **Algorithm:** Soft Actor-Critic (SAC)
|
| 31 |
+
- **Replay Buffer:** Hindsight Experience Replay (HER)
|
| 32 |
+
- **Environment:** FetchPickAndPlace-v4 (from gymnasium-robotics)
|
| 33 |
+
- **Framework:** Stable Baselines3
|
| 34 |
+
|
| 35 |
+
## Training Details
|
| 36 |
+
|
| 37 |
+
- **Total Timesteps:** 500,000
|
| 38 |
+
- **Dense Shaping:** Disabled
|
| 39 |
+
- **Evaluation:** Success rate and mean reward measured every 2,000 steps
|
| 40 |
+
- **Seed:** 42
|
| 41 |
+
|
| 42 |
+
## Usage
|
| 43 |
+
|
| 44 |
+
To load and use the model:
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from stable_baselines3 import SAC
|
| 48 |
+
import gymnasium as gym
|
| 49 |
+
import gymnasium_robotics
|
| 50 |
+
|
| 51 |
+
env = gym.make("FetchPickAndPlace-v4", render_mode="rgb_array")
|
| 52 |
+
model = SAC.load("path/to/sac-FetchPickAndPlace-v4.zip", env=env)
|
| 53 |
+
|
| 54 |
+
obs, info = env.reset()
|
| 55 |
+
done = False
|
| 56 |
+
while not done:
|
| 57 |
+
action, _ = model.predict(obs, deterministic=True)
|
| 58 |
+
obs, reward, done, truncated, info = env.step(action)
|
| 59 |
+
env.render()
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Evaluation & Replay
|
| 63 |
+
|
| 64 |
+
A replay video (`replay.mp4`) is included to visualize the agent's performance over two episodes.
|
| 65 |
+
|
| 66 |
+
## Files
|
| 67 |
+
|
| 68 |
+
- `sac-FetchPickAndPlace-v4.zip`: Trained SAC model
|
| 69 |
+
- `replay.mp4`: Agent replay video
|
| 70 |
+
- `README.md`: Model card
|
| 71 |
+
|
| 72 |
+
## Citation
|
| 73 |
+
|
| 74 |
+
If you use this model, please cite:
|
| 75 |
+
|
| 76 |
+
```
|
| 77 |
+
@misc{IntelliGrow_FetchPickAndPlace_SAC,
|
| 78 |
+
title={SAC Agent for FetchPickAndPlace-v4},
|
| 79 |
+
author={IntelliGrow},
|
| 80 |
+
year={2025},
|
| 81 |
+
howpublished={Hugging Face Hub},
|
| 82 |
+
url={https://huggingface.co/IntelliGrow/FetchPickAndPlace-v4}
|
| 83 |
+
}
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## License
|
| 87 |
+
|
| 88 |
+
MIT License
|
| 89 |
+
|
| 90 |
+
---
|