IntelliGrow commited on
Commit
4c5ccd9
·
verified ·
1 Parent(s): 6d433a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -37
README.md CHANGED
@@ -1,37 +1,90 @@
1
- ---
2
- library_name: stable-baselines3
3
- tags:
4
- - FetchPickAndPlace-v4
5
- - deep-reinforcement-learning
6
- - reinforcement-learning
7
- - stable-baselines3
8
- model-index:
9
- - name: SAC
10
- results:
11
- - task:
12
- type: reinforcement-learning
13
- name: reinforcement-learning
14
- dataset:
15
- name: FetchPickAndPlace-v4
16
- type: FetchPickAndPlace-v4
17
- metrics:
18
- - type: mean_reward
19
- value: -9.70 +/- 4.17
20
- name: mean_reward
21
- verified: false
22
- ---
23
-
24
- # **SAC** Agent playing **FetchPickAndPlace-v4**
25
- This is a trained model of a **SAC** agent playing **FetchPickAndPlace-v4**
26
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
-
28
- ## Usage (with Stable-baselines3)
29
- TODO: Add your code
30
-
31
-
32
- ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
35
-
36
- ...
37
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FetchPickAndPlace-v4
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: FetchPickAndPlace-v4
16
+ type: FetchPickAndPlace-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -9.70 +/- 4.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # SAC Agent for FetchPickAndPlace-v4
25
+
26
+ ## Model Description
27
+
28
+ This repository contains a Soft Actor-Critic (SAC) agent trained on the `FetchPickAndPlace-v4` environment using Hindsight Experience Replay (HER). The agent learns to pick and place objects in a simulated robotic environment.
29
+
30
+ - **Algorithm:** Soft Actor-Critic (SAC)
31
+ - **Replay Buffer:** Hindsight Experience Replay (HER)
32
+ - **Environment:** FetchPickAndPlace-v4 (from gymnasium-robotics)
33
+ - **Framework:** Stable Baselines3
34
+
35
+ ## Training Details
36
+
37
+ - **Total Timesteps:** 500,000
38
+ - **Dense Shaping:** Disabled
39
+ - **Evaluation:** Success rate and mean reward measured every 2,000 steps
40
+ - **Seed:** 42
41
+
42
+ ## Usage
43
+
44
+ To load and use the model:
45
+
46
+ ```python
47
+ from stable_baselines3 import SAC
48
+ import gymnasium as gym
49
+ import gymnasium_robotics
50
+
51
+ env = gym.make("FetchPickAndPlace-v4", render_mode="rgb_array")
52
+ model = SAC.load("path/to/sac-FetchPickAndPlace-v4.zip", env=env)
53
+
54
+ obs, info = env.reset()
55
+ done = False
56
+ while not done:
57
+ action, _ = model.predict(obs, deterministic=True)
58
+ obs, reward, done, truncated, info = env.step(action)
59
+ env.render()
60
+ ```
61
+
62
+ ## Evaluation & Replay
63
+
64
+ A replay video (`replay.mp4`) is included to visualize the agent's performance over two episodes.
65
+
66
+ ## Files
67
+
68
+ - `sac-FetchPickAndPlace-v4.zip`: Trained SAC model
69
+ - `replay.mp4`: Agent replay video
70
+ - `README.md`: Model card
71
+
72
+ ## Citation
73
+
74
+ If you use this model, please cite:
75
+
76
+ ```
77
+ @misc{IntelliGrow_FetchPickAndPlace_SAC,
78
+ title={SAC Agent for FetchPickAndPlace-v4},
79
+ author={IntelliGrow},
80
+ year={2025},
81
+ howpublished={Hugging Face Hub},
82
+ url={https://huggingface.co/IntelliGrow/FetchPickAndPlace-v4}
83
+ }
84
+ ```
85
+
86
+ ## License
87
+
88
+ MIT License
89
+
90
+ ---