jinjieyuan's picture
Update README.md
b2d0bf0 verified
|
raw
history blame
1.86 kB
---
language: en
license: apache-2.0
library_name: transformers
---
# SQFT Base Model: sqft-mistral-7b-v0.3-60-base
- Source Model: [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 60%
- Quantization: No
## Model Sources
**Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
**Paper:**
- [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
- [Low-Rank Adapters Meet Neural Architecture Search for LLM Compression](https://arxiv.org/abs/2501.16372)
## How to get this model
Refer to the command in [SQFT/run_command/mistral-7b-v0.3/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/legacy/run_command/mistral-7b-v0.3/sparse_quantization.sh#11).
## Citation
```bash
@inproceedings{munoz-etal-2024-sqft,
title = "{SQFT}: Low-cost Model Adaptation in Low-precision Sparse Foundation Models",
author = "Munoz, Juan Pablo and
Yuan, Jinjie and
Jain, Nilesh",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.749",
pages = "12817--12832",
}
```
## Acknowledgement
Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.
## License
Apache-2.0