LoNAS Model Card: lonas-bert-base-glue
The super-networks fine-tuned on BERT-base with GLUE benchmark using LoNAS.
Model Details
Information
- Model name: lonas-bert-base-glue
- Base model: bert-base-uncased
- Subnetwork version: Super-network
- NNCF Configurations: nncf_config/glue
Adapter Configuration
- LoRA rank: 8
- LoRA alpha: 16
- LoRA target modules: query, value
Training and Evaluation
Training Hyperparameters
Task | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI |
---|---|---|---|---|---|---|---|---|
Epoch | 80 | 35 | 60 | 80 | 60 | 80 | 60 | 40 |
Batch size | 32 | 32 | 64 | 64 | 64 | 64 | 64 | 64 |
Learning rate | 3e-4 | 5e-4 | 5e-4 | 3e-4 | 3e-4 | 4e-4 | 3e-4 | 4e-4 |
Max length | 128 | 128 | 128 | 128 | 128 | 256 | 128 | 128 |
How to use
CUDA_VISIBLE_DEVICES=${DEVICES} python run_glue.py \
--task_name ${TASK} \
--model_name_or_path bert-base-uncased \
--do_eval \
--do_search \
--per_device_eval_batch_size 64 \
--max_seq_length ${MAX_LENGTH} \
--lora \
--lora_weights lonas-bert-base-glue/lonas-bert-base-${TASK} \
--nncf_config nncf_config/glue/nncf_lonas_bert_base_${TASK}.json \
--output_dir lonas-bert-base-glue/lonas-bert-base-${TASK}/results
Evaluation Results
Results of the optimal sub-network discoverd from the super-network:
Method | Trainable Parameter Ratio | GFLOPs | RTE | MRPC | STS-B | CoLA | SST-2 | QNLI | QQP | MNLI | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|
LoRA | 0.27% | 11.2 | 65.85 | 84.46 | 88.73 | 57.58 | 92.06 | 90.62 | 89.41 | 83.00 | 81.46 |
LoNAS | 0.27% | 8.0 | 70.76 | 88.97 | 88.28 | 61.12 | 93.23 | 91.21 | 88.55 | 82.00 | 83.02 |
Model Sources
Repository: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS
Paper:
- LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models
- Low-Rank Adapters Meet Neural Architecture Search for LLM Compression
Citation
@inproceedings{munoz-etal-2024-lonas,
title = "{L}o{NAS}: Elastic Low-Rank Adapters for Efficient Large Language Models",
author = "Munoz, Juan Pablo and
Yuan, Jinjie and
Zheng, Yi and
Jain, Nilesh",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.940",
pages = "10760--10776",
}
License
Apache-2.0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.