license: cc-by-4.0 | |
tags: | |
- int8 | |
- Intel® Neural Compressor | |
- PostTrainingStatic | |
datasets: | |
- squad2 | |
metrics: | |
- f1 | |
# INT8 RoBERT base finetuned on Squad2 | |
### Post-training static quantization | |
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). | |
The original fp32 model comes from the fine-tuned model [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2). | |
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. | |
The linear modules **roberta.encoder.layer.7.output.dense**, **roberta.encoder.layer.8.output.dense**, **roberta.encoder.layer.9.output.dense**, fall back to fp32 for less than 1% relative accuracy loss. | |
### Evaluation result | |
| |INT8|FP32| | |
|---|:---:|:---:| | |
| **Accuracy (eval-f1)** |82.3122|82.9231| | |
| **Model size (MB)** |141|474| | |
### Load with optimum: | |
```python | |
from optimum.intel import INCModelForQuestionAnswering | |
model_id = "Intel/roberta-base-squad2-int8-static" | |
int8_model = INCModelForQuestionAnswering.from_pretrained(model_id) | |
``` | |