dynamic_tinybert / README.md
nazneen's picture
model documentation
bece709
|
raw
history blame
5.42 kB
---
tags:
- question-answering
- bert
---
# Model Card for dynamic_tinybert
# Model Details
## Model Description
Dynamic-TinyBERT: Boost TinyBERT’s Inference Efficiency by Dynamic Sequence Length
- **Developed by:** Intel
- **Shared by [Optional]:** Intel
- **Model type:** Question Answering
- **Language(s) (NLP):** More information needed
- **License:** More information needed
- **Parent Model:** BERT
- **Resources for more information:**
- [Associated Paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf)
# Uses
## Direct Use
This model can be used for the task of question answering.
## Downstream Use [Optional]
More information needed.
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf):
> All our experiments are evaluated on the challenging question-answering benchmark SQuAD1.1 [11].
## Training Procedure
### Preprocessing
The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf):
> We start with a pre-trained general-TinyBERT student, which was trained to learn the general knowledge of BERT using the general-distillation method presented by TinyBERT. We perform transformer distillation from a fine- tuned BERT teacher to the student, following the same training steps used in the original TinyBERT: (1) **intermediate-layer distillation (ID)** — learning the knowledge residing in the hidden states and attentions matrices, and (2) **prediction-layer distillation (PD)** — fitting the predictions of the teacher.
### Speeds, Sizes, Times
The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf):
>For our Dynamic-TinyBERT model we use the architecture of TinyBERT6L: a small BERT model with 6 layers, a hidden size of 768, a feed forward size of 3072 and 12 heads.
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
More information needed
### Factors
More information needed
### Metrics
More information needed
## Results
The model authors note in the [associated paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf):
| Model | Max F1 (full model) | Best Speedup within BERT-1% |
|------------------|---------------------|-----------------------------|
| Dynamic-TinyBERT | 88.71 | 3.3x |
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Titan GPU
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed.
# Citation
**BibTeX:**
```bibtex
@misc{https://doi.org/10.48550/arxiv.2111.09645,
doi = {10.48550/ARXIV.2111.09645},
url = {https://arxiv.org/abs/2111.09645},
author = {Guskin, Shira and Wasserblat, Moshe and Ding, Ke and Kim, Gyuwan},
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length},
publisher = {arXiv},
year = {2021},
```
**APA:**
More information needed
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
Intel in collaboration with Ezi Ozoani and the Hugging Face team
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("Intel/dynamic_tinybert")
model = AutoModelForQuestionAnswering.from_pretrained("Intel/dynamic_tinybert")
```
</details>