metadata
license: mit
tags:
- int8
- Intel® Neural Compressor
- neural-compressor
- PostTrainingDynamic
datasets:
- cnn_dailymail
metrics:
- rougeLsum
INT8 DistilBart finetuned on CNN DailyMail
Post-training dynamic quantization
This is an INT8 PyTorch model quantized with huggingface/optimum-intel through the usage of Intel® Neural Compressor.
The original fp32 model comes from the fine-tuned model sysresearch101/t5-large-finetuned-xsum-cnn.
Below linear modules are fallbacked to fp32 for less than 1% relative accuracy loss:
Evaluation result
INT8 | FP32 | |
---|---|---|
Accuracy (eval-rougeLsum) | 41.4707 | 41.8117 |
Model size | 722M | 1249M |
Load with optimum:
from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSeq2SeqLM
int8_model = IncQuantizedModelForSeq2SeqLM.from_pretrained(
'Intel/bart-large-cnn-int8-dynamic',
)