File size: 14,576 Bytes
9ba7a33 c469139 0d1e383 122b84c c469139 0d1e383 c469139 6036340 c469139 6036340 c469139 6036340 44bbdef 6036340 9ba7a33 6036340 44bbdef 9ba7a33 6036340 9ba7a33 122b84c 6036340 9ba7a33 6036340 9ba7a33 6036340 c469139 44bbdef 11a4bee 44bbdef c469139 11a4bee c469139 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
---
license: apache-2.0
datasets:
- Inst-IT/Inst-IT-Dataset
- lmms-lab/LLaVA-NeXT-Data
language:
- en
metrics:
- accuracy
base_model:
- liuhaotian/llava-v1.6-vicuna-7b
pipeline_tag: video-text-to-text
tags:
- multimodal
- fine-grained
- instance-understanding
model-index:
- name: LLaVA-Next-Inst-It-Vicuna-7B
results:
- task:
type: multimodal
dataset:
name: Inst-IT-Bench-I-OE
type: Open-Ended
metrics:
- type: accuracy
value: 68.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Inst-IT-Bench-I-MC
type: Multi-Choice
metrics:
- type: accuracy
value: 63
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: AI2D
type: ai2d
metrics:
- type: accuracy
value: 71
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MMMU
type: mmmu
metrics:
- type: accuracy
value: 37.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: POPE
type: pope
metrics:
- type: accuracy
value: 87.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: GQA
type: gqa
metrics:
- type: accuracy
value: 65.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MM-Vet
type: mm-vet
metrics:
- type: accuracy
value: 38.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Inst-IT-Bench-V-OE
type: Open-Ended
metrics:
- type: accuracy
value: 49.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: Inst-IT-Bench-V-MC
type: Multi-Choice
metrics:
- type: accuracy
value: 42.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: ActNet-QA
type: actnet-qa
metrics:
- type: accuracy
value: 53.7
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 57.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: NextQA
type: nextqa
metrics:
- type: accuracy
value: 70.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 44.3
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: TempoCompass
type: tempocompass
metrics:
- type: accuracy
value: 59.8
name: accuracy
verified: true
---
# LLaVA-Next-Inst-It-Vicuna-7B
[**Homepage**](https://inst-it.github.io/) | [**Code**](https://github.com/inst-it/inst-it) | [**Paper**](https://huggingface.co/papers/2412.03565) | [**arXiv**](https://arxiv.org/abs/2412.03565)
LLaVA-Next-Inst-It-Vicuna-7B is a multimodal model that excels at instance-level understanding,
which is introduced in the paper [Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning](https://huggingface.co/papers/2412.03565)
* **Architecture**: clip-vit-large-patch14-336 + Vicuna-7B
* **Initialized Model**: LLaVA-NeXT
* **Data**: LLaVA-NeXT-Data / Inst-IT-Dataset
* **Precision**: bfloat16
## Quick Start
**Install**
Our code is based on LLaVA-NeXT, before running, please install the LLaVA-NeXT to prepare the environment:
```shell
pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
```
**Load Model**
```python
from llava.model.builder import load_pretrained_model
from llava.constants import (
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from llava.mm_utils import (
KeywordsStoppingCriteria,
get_model_name_from_path,
tokenizer_image_token,
process_images
)
from llava.conversation import SeparatorStyle, conv_templates
overwrite_config = {}
overwrite_config["mm_spatial_pool_stride"] = 2
overwrite_config["mm_spatial_pool_mode"] = 'bilinear'
overwrite_config["mm_pooling_position"] = 'after'
overwrite_config["mm_newline_position"] = 'no_token'
model_path = "Inst-IT/LLaVA-Next-Inst-It-Vicuna-7B"
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, max_length = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=model_name,
device_map="auto",
torch_dtype='bfloat16',
overwrite_config=overwrite_config,
attn_implementation='sdpa')
```
**Image Inference**
<details>
<summary>Inference without SoMs</summary>
Our model can perform inference on images without [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts, in this case, it can be used in the same way as its base mode [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).
```python
import torch
import requests
from PIL import Image
img_url = "https://github.com/inst-it/inst-it/blob/main/assets/demo/image.jpg?raw=true"
image = Image.open(requests.get(img_url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config).bfloat16()
image_sizes = [image.size]
question = "Describe this image."
question = DEFAULT_IMAGE_TOKEN + "\n" + question
conv_template = 'vicuna_v1'
conv = conv_templates[conv_template].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
attention_masks = input_ids.ne(pad_token_ids).long().cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
inputs=input_ids,
images=image_tensor,
attention_mask=attention_masks,
modalities="image",
image_sizes=image_sizes,
use_cache=True,
stopping_criteria=[stopping_criteria],
max_new_tokens=4096
)
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(pred)
```
</details>
<details>
<summary>Inference with SoMs</summary>
Our model performs more fine-grained understanding when [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts are provided.
You can refer to the instances that you are interested in using their IDs.
Compared to the previous inference code, the following code has no modifications except for the input image, which is visual prompted with Set-of-Marks.
Refer to [this link](https://github.com/microsoft/SoM) to learn how to generate SoMs for an image.
```python
import torch
import requests
from PIL import Image
img_url = "https://github.com/inst-it/inst-it/blob/main/assets/demo/image_som.jpg?raw=true"
image = Image.open(requests.get(img_url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config).bfloat16()
image_sizes = [image.size]
# You can use [id] to refer to the instances that you are interested in
question = "Describe [8] in detail."
question = DEFAULT_IMAGE_TOKEN + "\n" + question
conv_template = 'vicuna_v1'
conv = conv_templates[conv_template].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
attention_masks = input_ids.ne(pad_token_ids).long().cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
inputs=input_ids,
images=image_tensor,
attention_mask=attention_masks,
modalities="image",
image_sizes=image_sizes,
use_cache=True,
stopping_criteria=[stopping_criteria],
max_new_tokens=4096
)
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(pred)
```
</details>
**Video Inference**
For the video, we organize each frame into a list. You can use the format \<t\> to refer to a specific timestamp (e.g. <1>).
<details>
<summary>Inference without SoMs</summary>
Our model can perform inference on videos without [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts, in this case, it can be used in the same way as its base mode [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).
```python
import torch
import requests
from PIL import Image
frame_urls = [
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_1.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_2.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_3.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_4.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_5.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_6.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_7.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/frame_8.jpg?raw=true"
]
video = [Image.open(requests.get(frame_url, stream=True).raw) for frame_url in frame_urls]
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda()
video = video.bfloat16()
videos = [video]
question = "Describe the video." # overall video caption
question = "What happens at frame <1>?" # caption a specific moment
question = DEFAULT_IMAGE_TOKEN + "\n" + question
conv_template = 'vicuna_v1'
conv = conv_templates[conv_template].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
attention_masks = input_ids.ne(pad_token_ids).long().cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
inputs=input_ids,
images=videos,
attention_mask=attention_masks,
modalities="video",
use_cache=True,
stopping_criteria=[stopping_criteria],
max_new_tokens=4096
)
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(pred)
```
</details>
<details>
<summary>Inference with SoMs</summary>
Our model performs more fine-grained understanding when [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts are provided.
You can refer to the instances that you are interested in using their IDs.
Compared to the previous inference code, the following code has no modifications except for the input video, which is visual prompted with Set-of-Marks.
Refer to [SAM2](https://github.com/facebookresearch/sam2) and [SoM](https://github.com/microsoft/SoM) to learn how to generate SoMs for a video.
```python
import torch
import requests
from PIL import Image
frame_urls = [
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_1.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_2.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_3.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_4.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_5.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_6.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_7.jpg?raw=true",
"https://github.com/inst-it/inst-it/blob/main/assets/demo/som_frame_8.jpg?raw=true"
]
video = [Image.open(requests.get(frame_url, stream=True).raw) for frame_url in frame_urls]
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda()
video = video.bfloat16()
videos = [video]
# You can use [id] to refer to the instances that you are interested in
question = "Is [3] visible at <1>?"
question = DEFAULT_IMAGE_TOKEN + "\n" + question
conv_template = 'vicuna_v1'
conv = conv_templates[conv_template].copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
attention_masks = input_ids.ne(pad_token_ids).long().cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
inputs=input_ids,
images=videos,
attention_mask=attention_masks,
modalities="video",
use_cache=True,
stopping_criteria=[stopping_criteria],
max_new_tokens=4096
)
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(pred)
```
</details>
## Contact
Feel free to contact us if you have any questions or suggestions
- Email (Wujian Peng): [email protected]
- Email (Lingchen Meng): [email protected]
## Citation
``` bibtex
@article{peng2024inst,
title={Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning},
author={Peng, Wujian and Meng, Lingchen and Chen, Yitong and Xie, Yiweng and Liu, Yang and Gui, Tao and Xu, Hang and Qiu, Xipeng and Wu, Zuxuan and Jiang, Yu-Gang},
journal={arXiv preprint arXiv:2412.03565},
year={2024}
}
``` |