Update README.md
Browse files
README.md
CHANGED
@@ -1,167 +1,166 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
datasets:
|
4 |
-
- Inst-IT/Inst-IT-Dataset
|
5 |
-
- lmms-lab/LLaVA-NeXT-Data
|
6 |
-
language:
|
7 |
-
- en
|
8 |
-
metrics:
|
9 |
-
- accuracy
|
10 |
-
base_model:
|
11 |
-
- liuhaotian/llava-v1.6-vicuna-7b
|
12 |
-
pipeline_tag: video-text-to-text
|
13 |
-
tags:
|
14 |
-
- multimodal
|
15 |
-
- fine-grained
|
16 |
-
- instance-understanding
|
17 |
-
model-index:
|
18 |
-
- name: LLaVA-Next-Inst-It-Vicuna-7B
|
19 |
-
results:
|
20 |
-
- task:
|
21 |
-
type: multimodal
|
22 |
-
dataset:
|
23 |
-
name: Inst-IT-Bench-I-OE
|
24 |
-
type: Open-Ended
|
25 |
-
metrics:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
- task:
|
31 |
-
type: multimodal
|
32 |
-
dataset:
|
33 |
-
name: Inst-IT-Bench-I-MC
|
34 |
-
type: Multi-Choice
|
35 |
-
metrics:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
- task:
|
41 |
-
type: multimodal
|
42 |
-
dataset:
|
43 |
-
name: AI2D
|
44 |
-
type: ai2d
|
45 |
-
metrics:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
- task:
|
51 |
-
type: multimodal
|
52 |
-
dataset:
|
53 |
-
name: MMMU
|
54 |
-
type: mmmu
|
55 |
-
metrics:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
- task:
|
61 |
-
type: multimodal
|
62 |
-
dataset:
|
63 |
-
name: POPE
|
64 |
-
type: pope
|
65 |
-
metrics:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
- task:
|
71 |
-
type: multimodal
|
72 |
-
dataset:
|
73 |
-
name: GQA
|
74 |
-
type: gqa
|
75 |
-
metrics:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
- task:
|
81 |
-
type: multimodal
|
82 |
-
dataset:
|
83 |
-
name: MM-Vet
|
84 |
-
type: mm-vet
|
85 |
-
metrics:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
- task:
|
91 |
-
type: multimodal
|
92 |
-
dataset:
|
93 |
-
name: Inst-IT-Bench-V-OE
|
94 |
-
type: Open-Ended
|
95 |
-
metrics:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
- task:
|
101 |
-
type: multimodal
|
102 |
-
dataset:
|
103 |
-
name: Inst-IT-Bench-V-MC
|
104 |
-
type: Multi-Choice
|
105 |
-
metrics:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
- task:
|
111 |
-
type: multimodal
|
112 |
-
dataset:
|
113 |
-
name: ActNet-QA
|
114 |
-
type: actnet-qa
|
115 |
-
metrics:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
- task:
|
121 |
-
type: multimodal
|
122 |
-
dataset:
|
123 |
-
name: EgoSchema
|
124 |
-
type: egoschema
|
125 |
-
metrics:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
- task:
|
131 |
-
type: multimodal
|
132 |
-
dataset:
|
133 |
-
name: NextQA
|
134 |
-
type: nextqa
|
135 |
-
metrics:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
- task:
|
141 |
-
type: multimodal
|
142 |
-
dataset:
|
143 |
-
name: VideoMME
|
144 |
-
type: videomme
|
145 |
-
metrics:
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
- task:
|
151 |
-
type: multimodal
|
152 |
-
dataset:
|
153 |
-
name: TempoCompass
|
154 |
-
type: tempocompass
|
155 |
-
metrics:
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
---
|
162 |
|
163 |
# LLaVA-Next-Inst-It-Vicuna-7B
|
164 |
-
[
|
165 |
|
166 |
LLaVA-Next-Inst-It-Vicuna-7B is a multimodal model that excels at instance-level understanding,
|
167 |
which is introduced in the paper [Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning](https://huggingface.co/papers/2412.03565)
|
@@ -217,11 +216,10 @@ tokenizer, model, image_processor, max_length = load_pretrained_model(
|
|
217 |
```
|
218 |
**Image Inference**
|
219 |
|
|
|
220 |
<details>
|
221 |
<summary>Inference without SoMs</summary>
|
222 |
|
223 |
-
Our model can perform inference on images without [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts, in this case, it can be used in the same way as its base mode [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).
|
224 |
-
|
225 |
```python
|
226 |
import torch
|
227 |
import requests
|
@@ -267,14 +265,12 @@ print(pred)
|
|
267 |
```
|
268 |
</details>
|
269 |
|
270 |
-
|
271 |
-
<details>
|
272 |
-
<summary>Inference with SoMs</summary>
|
273 |
-
|
274 |
Our model performs even better when [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts are provided.
|
275 |
Compared to the previous inference code, the following code has no modifications except for the input image, which is visual prompted with Set-of-Marks.
|
276 |
You can refer to [this link](https://github.com/microsoft/SoM) to learn how to generate SoMs for an image.
|
277 |
-
|
|
|
|
|
278 |
```python
|
279 |
import torch
|
280 |
import requests
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- Inst-IT/Inst-IT-Dataset
|
5 |
+
- lmms-lab/LLaVA-NeXT-Data
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
base_model:
|
11 |
+
- liuhaotian/llava-v1.6-vicuna-7b
|
12 |
+
pipeline_tag: video-text-to-text
|
13 |
+
tags:
|
14 |
+
- multimodal
|
15 |
+
- fine-grained
|
16 |
+
- instance-understanding
|
17 |
+
model-index:
|
18 |
+
- name: LLaVA-Next-Inst-It-Vicuna-7B
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: multimodal
|
22 |
+
dataset:
|
23 |
+
name: Inst-IT-Bench-I-OE
|
24 |
+
type: Open-Ended
|
25 |
+
metrics:
|
26 |
+
- type: accuracy
|
27 |
+
value: 68.6
|
28 |
+
name: accuracy
|
29 |
+
verified: true
|
30 |
+
- task:
|
31 |
+
type: multimodal
|
32 |
+
dataset:
|
33 |
+
name: Inst-IT-Bench-I-MC
|
34 |
+
type: Multi-Choice
|
35 |
+
metrics:
|
36 |
+
- type: accuracy
|
37 |
+
value: 63
|
38 |
+
name: accuracy
|
39 |
+
verified: true
|
40 |
+
- task:
|
41 |
+
type: multimodal
|
42 |
+
dataset:
|
43 |
+
name: AI2D
|
44 |
+
type: ai2d
|
45 |
+
metrics:
|
46 |
+
- type: accuracy
|
47 |
+
value: 71
|
48 |
+
name: accuracy
|
49 |
+
verified: true
|
50 |
+
- task:
|
51 |
+
type: multimodal
|
52 |
+
dataset:
|
53 |
+
name: MMMU
|
54 |
+
type: mmmu
|
55 |
+
metrics:
|
56 |
+
- type: accuracy
|
57 |
+
value: 37.4
|
58 |
+
name: accuracy
|
59 |
+
verified: true
|
60 |
+
- task:
|
61 |
+
type: multimodal
|
62 |
+
dataset:
|
63 |
+
name: POPE
|
64 |
+
type: pope
|
65 |
+
metrics:
|
66 |
+
- type: accuracy
|
67 |
+
value: 87.2
|
68 |
+
name: accuracy
|
69 |
+
verified: true
|
70 |
+
- task:
|
71 |
+
type: multimodal
|
72 |
+
dataset:
|
73 |
+
name: GQA
|
74 |
+
type: gqa
|
75 |
+
metrics:
|
76 |
+
- type: accuracy
|
77 |
+
value: 65.9
|
78 |
+
name: accuracy
|
79 |
+
verified: true
|
80 |
+
- task:
|
81 |
+
type: multimodal
|
82 |
+
dataset:
|
83 |
+
name: MM-Vet
|
84 |
+
type: mm-vet
|
85 |
+
metrics:
|
86 |
+
- type: accuracy
|
87 |
+
value: 38.1
|
88 |
+
name: accuracy
|
89 |
+
verified: true
|
90 |
+
- task:
|
91 |
+
type: multimodal
|
92 |
+
dataset:
|
93 |
+
name: Inst-IT-Bench-V-OE
|
94 |
+
type: Open-Ended
|
95 |
+
metrics:
|
96 |
+
- type: accuracy
|
97 |
+
value: 49.3
|
98 |
+
name: accuracy
|
99 |
+
verified: true
|
100 |
+
- task:
|
101 |
+
type: multimodal
|
102 |
+
dataset:
|
103 |
+
name: Inst-IT-Bench-V-MC
|
104 |
+
type: Multi-Choice
|
105 |
+
metrics:
|
106 |
+
- type: accuracy
|
107 |
+
value: 42.1
|
108 |
+
name: accuracy
|
109 |
+
verified: true
|
110 |
+
- task:
|
111 |
+
type: multimodal
|
112 |
+
dataset:
|
113 |
+
name: ActNet-QA
|
114 |
+
type: actnet-qa
|
115 |
+
metrics:
|
116 |
+
- type: accuracy
|
117 |
+
value: 53.7
|
118 |
+
name: accuracy
|
119 |
+
verified: true
|
120 |
+
- task:
|
121 |
+
type: multimodal
|
122 |
+
dataset:
|
123 |
+
name: EgoSchema
|
124 |
+
type: egoschema
|
125 |
+
metrics:
|
126 |
+
- type: accuracy
|
127 |
+
value: 57.8
|
128 |
+
name: accuracy
|
129 |
+
verified: true
|
130 |
+
- task:
|
131 |
+
type: multimodal
|
132 |
+
dataset:
|
133 |
+
name: NextQA
|
134 |
+
type: nextqa
|
135 |
+
metrics:
|
136 |
+
- type: accuracy
|
137 |
+
value: 70.2
|
138 |
+
name: accuracy
|
139 |
+
verified: true
|
140 |
+
- task:
|
141 |
+
type: multimodal
|
142 |
+
dataset:
|
143 |
+
name: VideoMME
|
144 |
+
type: videomme
|
145 |
+
metrics:
|
146 |
+
- type: accuracy
|
147 |
+
value: 44.3
|
148 |
+
name: accuracy
|
149 |
+
verified: true
|
150 |
+
- task:
|
151 |
+
type: multimodal
|
152 |
+
dataset:
|
153 |
+
name: TempoCompass
|
154 |
+
type: tempocompass
|
155 |
+
metrics:
|
156 |
+
- type: accuracy
|
157 |
+
value: 59.8
|
158 |
+
name: accuracy
|
159 |
+
verified: true
|
160 |
+
---
|
|
|
161 |
|
162 |
# LLaVA-Next-Inst-It-Vicuna-7B
|
163 |
+
[**Homepage**](https://inst-it.github.io/) | [**Code**](https://github.com/inst-it/inst-it) | [**Paper**](https://huggingface.co/papers/2412.03565) | [**arXiv**](https://arxiv.org/abs/2412.03565)
|
164 |
|
165 |
LLaVA-Next-Inst-It-Vicuna-7B is a multimodal model that excels at instance-level understanding,
|
166 |
which is introduced in the paper [Inst-IT: Boosting Multimodal Instance Understanding via Explicit Visual Prompt Instruction Tuning](https://huggingface.co/papers/2412.03565)
|
|
|
216 |
```
|
217 |
**Image Inference**
|
218 |
|
219 |
+
Our model can perform inference on images without [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts, in this case, it can be used in the same way as its base mode [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).
|
220 |
<details>
|
221 |
<summary>Inference without SoMs</summary>
|
222 |
|
|
|
|
|
223 |
```python
|
224 |
import torch
|
225 |
import requests
|
|
|
265 |
```
|
266 |
</details>
|
267 |
|
|
|
|
|
|
|
|
|
268 |
Our model performs even better when [Set-of-Marks](https://arxiv.org/abs/2310.11441) visual prompts are provided.
|
269 |
Compared to the previous inference code, the following code has no modifications except for the input image, which is visual prompted with Set-of-Marks.
|
270 |
You can refer to [this link](https://github.com/microsoft/SoM) to learn how to generate SoMs for an image.
|
271 |
+
<details>
|
272 |
+
<summary>Inference with SoMs</summary>
|
273 |
+
|
274 |
```python
|
275 |
import torch
|
276 |
import requests
|