A-I-0xtom-7B-slerp

A-I-0xtom-7B-slerp is a merge of the following models using LazyMergekit:

Avg model loss 0.3912096044793725

I used this testing script that loads your local model, pulls the latest data from cortex and calculates the loss: avg loss script

🧩 Configuration

slices:
  - sources:
      - model: 0x0dad0/nous_nous_v2_0
        layer_range: [0, 32]
      - model: tomaszki/nous-thirty
        layer_range: [0, 32]
merge_method: slerp
base_model: 0x0dad0/nous_nous_v2_0
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "InnerI/A-I-0xtom-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.46
AI2 Reasoning Challenge (25-Shot) 58.19
HellaSwag (10-Shot) 77.64
MMLU (5-Shot) 58.74
TruthfulQA (0-shot) 54.78
Winogrande (5-shot) 73.24
GSM8k (5-shot) 40.18
Downloads last month
24
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for InnerI/A-I-0xtom-7B-slerp

Finetuned
(1)
this model
Merges
3 models
Quantizations
1 model

Collection including InnerI/A-I-0xtom-7B-slerp

Evaluation results