|
Mean and STD: |
|
- lat_mean: 39.95177538047139 |
|
- lat_std: 0.000688423824245344 |
|
- lon_mean: -75.19147811784511 |
|
- lon_std: 0.0006632296829719546 |
|
|
|
Implemented a ResNet50-based model using PyTorch: | |
|
import torch |
|
import torch.nn as nn |
|
from torchvision.models import resnet50 |
|
|
|
class CustomResNet50(nn.Module): |
|
def __init__(self, num_classes=2): |
|
super().__init__() |
|
self.model = resnet50(pretrained=False) |
|
num_features = self.model.fc.in_features |
|
self.model.fc = nn.Linear(num_features, num_classes) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
Run the following code to access the model: | |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
import torch.nn as nn |
|
from torchvision.models import resnet50 |
|
|
|
repo_id = "ImageGPSProj/ResNet50Model" |
|
filename = "custom_resnet50.pth" |
|
model_path = hf_hub_download(repo_id=repo_id, filename=filename) |
|
|
|
# Re-instantiate the architecture |
|
loaded_model = resnet50(pretrained=False) |
|
num_features = loaded_model.fc.in_features |
|
loaded_model.fc = nn.Linear(num_features, 2) |
|
|
|
# Load the state_dict |
|
state_dict = torch.load(model_path, map_location=torch.device('cpu')) |
|
loaded_model.load_state_dict(state_dict) |
|
|
|
loaded_model.eval() |
|
|
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: Latitude |
|
dtype: float64 |
|
- name: Longitude |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 6747451504 |
|
num_examples: 825 |
|
- name: test |
|
num_bytes: 928890377 |
|
num_examples: 105 |
|
- name: val |
|
num_bytes: 791887265 |
|
num_examples: 102 |
|
download_size: 7405818019 |
|
dataset_size: 8468229146 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
- split: val |
|
path: data/val-* |
|
|