Last commit not found
from functools import partial | |
from typing import Callable, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from open_clip.factory import get_model_config | |
from open_clip.model import CLIPVisionCfg | |
from timm.layers import ( | |
AvgPool2dSame, | |
ClassifierHead, | |
DropPath, | |
GlobalResponseNormMlp, | |
LayerNorm, | |
LayerNorm2d, | |
Mlp, | |
NormMlpClassifierHead, | |
create_conv2d, | |
get_act_layer, | |
make_divisible, | |
to_ntuple, | |
trunc_normal_, | |
) | |
from timm.models._builder import build_model_with_cfg | |
from timm.models._features import feature_take_indices | |
from timm.models._manipulate import checkpoint_seq, named_apply | |
__all__ = ["ConvNeXt"] # model_registry will add each entrypoint fn to this | |
class Downsample(nn.Module): | |
def __init__(self, in_chs, out_chs, stride=1, dilation=1): | |
super().__init__() | |
avg_stride = stride if dilation == 1 else 1 | |
if stride > 1 or dilation > 1: | |
avg_pool_fn = ( | |
AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d | |
) | |
self.pool = avg_pool_fn( | |
2, avg_stride, ceil_mode=True, count_include_pad=False | |
) | |
else: | |
self.pool = nn.Identity() | |
if in_chs != out_chs: | |
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) | |
else: | |
self.conv = nn.Identity() | |
def forward(self, x): | |
x = self.pool(x) | |
x = self.conv(x) | |
return x | |
class ConvNeXtBlock(nn.Module): | |
"""ConvNeXt Block | |
There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate | |
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear | |
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. | |
""" | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: Optional[int] = None, | |
kernel_size: int = 7, | |
stride: int = 1, | |
dilation: Union[int, Tuple[int, int]] = (1, 1), | |
mlp_ratio: float = 4, | |
conv_mlp: bool = False, | |
conv_bias: bool = True, | |
use_grn: bool = False, | |
ls_init_value: Optional[float] = 1e-6, | |
act_layer: Union[str, Callable] = "gelu", | |
norm_layer: Optional[Callable] = None, | |
drop_path: float = 0.0, | |
): | |
""" | |
Args: | |
in_chs: Block input channels. | |
out_chs: Block output channels (same as in_chs if None). | |
kernel_size: Depthwise convolution kernel size. | |
stride: Stride of depthwise convolution. | |
dilation: Tuple specifying input and output dilation of block. | |
mlp_ratio: MLP expansion ratio. | |
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. | |
conv_bias: Apply bias for all convolution (linear) layers. | |
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) | |
ls_init_value: Layer-scale init values, layer-scale applied if not None. | |
act_layer: Activation layer. | |
norm_layer: Normalization layer (defaults to LN if not specified). | |
drop_path: Stochastic depth probability. | |
""" | |
super().__init__() | |
out_chs = out_chs or in_chs | |
dilation = to_ntuple(2)(dilation) | |
act_layer = get_act_layer(act_layer) | |
if not norm_layer: | |
norm_layer = LayerNorm2d if conv_mlp else LayerNorm | |
mlp_layer = partial( | |
GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp | |
) | |
self.use_conv_mlp = conv_mlp | |
self.conv_dw = create_conv2d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation[0], | |
depthwise=True, | |
bias=conv_bias, | |
) | |
self.norm = norm_layer(out_chs) | |
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) | |
self.ramma = ( | |
nn.Parameter(ls_init_value * torch.ones(out_chs)) | |
if ls_init_value is not None | |
else None | |
) | |
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: | |
self.shortcut = Downsample( | |
in_chs, out_chs, stride=stride, dilation=dilation[0] | |
) | |
else: | |
self.shortcut = nn.Identity() | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv_dw(x) | |
if self.use_conv_mlp: | |
x = self.norm(x) | |
x = self.mlp(x) | |
else: | |
x = x.permute(0, 2, 3, 1) | |
x = self.norm(x) | |
x = self.mlp(x) | |
x = x.permute(0, 3, 1, 2) | |
if self.ramma is not None: | |
x = x.mul(self.ramma.reshape(1, -1, 1, 1)) | |
x = self.drop_path(x) + self.shortcut(shortcut) | |
return x | |
class ConvNeXtStage(nn.Module): | |
def __init__( | |
self, | |
in_chs, | |
out_chs, | |
kernel_size=7, | |
stride=2, | |
depth=2, | |
dilation=(1, 1), | |
drop_path_rates=None, | |
ls_init_value=1.0, | |
conv_mlp=False, | |
conv_bias=True, | |
use_grn=False, | |
act_layer="gelu", | |
norm_layer=None, | |
norm_layer_cl=None, | |
): | |
super().__init__() | |
self.grad_checkpointing = False | |
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: | |
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 | |
pad = ( | |
"same" if dilation[1] > 1 else 0 | |
) # same padding needed if dilation used | |
self.downsample = nn.Sequential( | |
norm_layer(in_chs), | |
create_conv2d( | |
in_chs, | |
out_chs, | |
kernel_size=ds_ks, | |
stride=stride, | |
dilation=dilation[0], | |
padding=pad, | |
bias=conv_bias, | |
), | |
) | |
in_chs = out_chs | |
else: | |
self.downsample = nn.Identity() | |
drop_path_rates = drop_path_rates or [0.0] * depth | |
stage_blocks = [] | |
for i in range(depth): | |
stage_blocks.append( | |
ConvNeXtBlock( | |
in_chs=in_chs, | |
out_chs=out_chs, | |
kernel_size=kernel_size, | |
dilation=dilation[1], | |
drop_path=drop_path_rates[i], | |
ls_init_value=ls_init_value, | |
conv_mlp=conv_mlp, | |
conv_bias=conv_bias, | |
use_grn=use_grn, | |
act_layer=act_layer, | |
norm_layer=norm_layer if conv_mlp else norm_layer_cl, | |
) | |
) | |
in_chs = out_chs | |
self.blocks = nn.Sequential(*stage_blocks) | |
def forward(self, x): | |
x = self.downsample(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
return x | |
class ConvNeXt(nn.Module): | |
r"""ConvNeXt | |
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf | |
""" | |
def __init__( | |
self, | |
in_chans: int = 3, | |
num_classes: int = 1000, | |
global_pool: str = "avg", | |
output_stride: int = 32, | |
depths: Tuple[int, ...] = (3, 3, 9, 3), | |
dims: Tuple[int, ...] = (96, 192, 384, 768), | |
kernel_sizes: Union[int, Tuple[int, ...]] = 7, | |
ls_init_value: Optional[float] = 1e-6, | |
stem_type: str = "patch", | |
patch_size: int = 4, | |
head_init_scale: float = 1.0, | |
head_norm_first: bool = False, | |
head_hidden_size: Optional[int] = None, | |
conv_mlp: bool = False, | |
conv_bias: bool = True, | |
use_grn: bool = False, | |
act_layer: Union[str, Callable] = "gelu", | |
norm_layer: Optional[Union[str, Callable]] = None, | |
norm_eps: Optional[float] = None, | |
drop_rate: float = 0.0, | |
drop_path_rate: float = 0.0, | |
): | |
""" | |
Args: | |
in_chans: Number of input image channels. | |
num_classes: Number of classes for classification head. | |
global_pool: Global pooling type. | |
output_stride: Output stride of network, one of (8, 16, 32). | |
depths: Number of blocks at each stage. | |
dims: Feature dimension at each stage. | |
kernel_sizes: Depthwise convolution kernel-sizes for each stage. | |
ls_init_value: Init value for Layer Scale, disabled if None. | |
stem_type: Type of stem. | |
patch_size: Stem patch size for patch stem. | |
head_init_scale: Init scaling value for classifier weights and biases. | |
head_norm_first: Apply normalization before global pool + head. | |
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. | |
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. | |
conv_bias: Use bias layers w/ all convolutions. | |
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. | |
act_layer: Activation layer type. | |
norm_layer: Normalization layer type. | |
drop_rate: Head pre-classifier dropout rate. | |
drop_path_rate: Stochastic depth drop rate. | |
""" | |
super().__init__() | |
assert output_stride in (8, 16, 32) | |
kernel_sizes = to_ntuple(4)(kernel_sizes) | |
if norm_layer is None: | |
norm_layer = LayerNorm2d | |
norm_layer_cl = norm_layer if conv_mlp else LayerNorm | |
if norm_eps is not None: | |
norm_layer = partial(norm_layer, eps=norm_eps) | |
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) | |
else: | |
assert ( | |
conv_mlp | |
), "If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input" | |
norm_layer_cl = norm_layer | |
if norm_eps is not None: | |
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
self.feature_info = [] | |
assert stem_type in ("patch", "overlap", "overlap_tiered") | |
if stem_type == "patch": | |
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 | |
self.stem = nn.Sequential( | |
nn.Conv2d( | |
in_chans, | |
dims[0], | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=conv_bias, | |
), | |
norm_layer(dims[0]), | |
) | |
stem_stride = patch_size | |
else: | |
mid_chs = make_divisible(dims[0] // 2) if "tiered" in stem_type else dims[0] | |
self.stem = nn.Sequential( | |
nn.Conv2d( | |
in_chans, | |
mid_chs, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=conv_bias, | |
), | |
nn.Conv2d( | |
mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias | |
), | |
norm_layer(dims[0]), | |
) | |
stem_stride = 4 | |
self.stages = nn.Sequential() | |
dp_rates = [ | |
x.tolist() | |
for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths) | |
] | |
stages = [] | |
prev_chs = dims[0] | |
curr_stride = stem_stride | |
dilation = 1 | |
# 4 feature resolution stages, each consisting of multiple residual blocks | |
for i in range(4): | |
stride = 2 if curr_stride == 2 or i > 0 else 1 | |
if curr_stride >= output_stride and stride > 1: | |
dilation *= stride | |
stride = 1 | |
curr_stride *= stride | |
first_dilation = 1 if dilation in (1, 2) else 2 | |
out_chs = dims[i] | |
stages.append( | |
ConvNeXtStage( | |
prev_chs, | |
out_chs, | |
kernel_size=kernel_sizes[i], | |
stride=stride, | |
dilation=(first_dilation, dilation), | |
depth=depths[i], | |
drop_path_rates=dp_rates[i], | |
ls_init_value=ls_init_value, | |
conv_mlp=conv_mlp, | |
conv_bias=conv_bias, | |
use_grn=use_grn, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
norm_layer_cl=norm_layer_cl, | |
) | |
) | |
prev_chs = out_chs | |
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 | |
self.feature_info += [ | |
dict(num_chs=prev_chs, reduction=curr_stride, module=f"stages.{i}") | |
] | |
self.stages = nn.Sequential(*stages) | |
self.num_features = self.head_hidden_size = prev_chs | |
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets | |
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights) | |
if head_norm_first: | |
assert not head_hidden_size | |
self.norm_pre = norm_layer(self.num_features) | |
self.head = ClassifierHead( | |
self.num_features, | |
num_classes, | |
pool_type=global_pool, | |
drop_rate=self.drop_rate, | |
) | |
else: | |
self.norm_pre = nn.Identity() | |
self.head = NormMlpClassifierHead( | |
self.num_features, | |
num_classes, | |
hidden_size=head_hidden_size, | |
pool_type=global_pool, | |
drop_rate=self.drop_rate, | |
norm_layer=norm_layer, | |
act_layer="gelu", | |
) | |
self.head_hidden_size = self.head.num_features | |
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r"^stem", | |
blocks=( | |
r"^stages\.(\d+)" | |
if coarse | |
else [ | |
(r"^stages\.(\d+)\.downsample", (0,)), # blocks | |
(r"^stages\.(\d+)\.blocks\.(\d+)", None), | |
(r"^norm_pre", (99999,)), | |
] | |
), | |
) | |
def set_grad_checkpointing(self, enable=True): | |
for s in self.stages: | |
s.grad_checkpointing = enable | |
def get_classifier(self) -> nn.Module: | |
return self.head.fc | |
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): | |
self.num_classes = num_classes | |
self.head.reset(num_classes, global_pool) | |
def forward_intermediates( | |
self, | |
x: torch.Tensor, | |
indices: Optional[Union[int, List[int], Tuple[int]]] = None, | |
norm: bool = False, | |
stop_early: bool = False, | |
output_fmt: str = "NCHW", | |
intermediates_only: bool = False, | |
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: | |
"""Forward features that returns intermediates. | |
Args: | |
x: Input image tensor | |
indices: Take last n blocks if int, all if None, select matching indices if sequence | |
norm: Apply norm layer to compatible intermediates | |
stop_early: Stop iterating over blocks when last desired intermediate hit | |
output_fmt: Shape of intermediate feature outputs | |
intermediates_only: Only return intermediate features | |
Returns: | |
""" | |
assert output_fmt in ("NCHW",), "Output shape must be NCHW." | |
intermediates = [] | |
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) | |
# forward pass | |
feat_idx = 0 # stem is index 0 | |
x = self.stem(x) | |
if feat_idx in take_indices: | |
intermediates.append(x) | |
if ( | |
torch.jit.is_scripting() or not stop_early | |
): # can't slice blocks in torchscript | |
stages = self.stages | |
else: | |
stages = self.stages[:max_index] | |
for stage in stages: | |
feat_idx += 1 | |
x = stage(x) | |
if feat_idx in take_indices: | |
# NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled | |
intermediates.append(x) | |
if intermediates_only: | |
return intermediates | |
x = self.norm_pre(x) | |
return x, intermediates | |
def prune_intermediate_layers( | |
self, | |
indices: Union[int, List[int], Tuple[int]] = 1, | |
prune_norm: bool = False, | |
prune_head: bool = True, | |
): | |
"""Prune layers not required for specified intermediates.""" | |
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) | |
self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 | |
if prune_norm: | |
self.norm_pre = nn.Identity() | |
if prune_head: | |
self.reset_classifier(0, "") | |
return take_indices | |
def forward_features(self, x): | |
x = self.stem(x) | |
x = self.stages(x) | |
x = self.norm_pre(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
return self.head(x, pre_logits=True) if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |
def _init_weights(module, name=None, head_init_scale=1.0): | |
if isinstance(module, nn.Conv2d): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
nn.init.zeros_(module.bias) | |
if name and "head." in name: | |
module.weight.data.mul_(head_init_scale) | |
module.bias.data.mul_(head_init_scale) | |
def checkpoint_filter_fn(state_dict, model): | |
"""Remap FB checkpoints -> timm""" | |
if "head.norm.weight" in state_dict or "norm_pre.weight" in state_dict: | |
return state_dict # non-FB checkpoint | |
if "model" in state_dict: | |
state_dict = state_dict["model"] | |
out_dict = {} | |
if "visual.trunk.stem.0.weight" in state_dict: | |
out_dict = { | |
k.replace("visual.trunk.", ""): v | |
for k, v in state_dict.items() | |
if k.startswith("visual.trunk.") | |
} | |
if "visual.head.proj.weight" in state_dict: | |
out_dict["head.fc.weight"] = state_dict["visual.head.proj.weight"] | |
out_dict["head.fc.bias"] = torch.zeros( | |
state_dict["visual.head.proj.weight"].shape[0] | |
) | |
elif "visual.head.mlp.fc1.weight" in state_dict: | |
out_dict["head.pre_logits.fc.weight"] = state_dict[ | |
"visual.head.mlp.fc1.weight" | |
] | |
out_dict["head.pre_logits.fc.bias"] = state_dict["visual.head.mlp.fc1.bias"] | |
out_dict["head.fc.weight"] = state_dict["visual.head.mlp.fc2.weight"] | |
out_dict["head.fc.bias"] = torch.zeros( | |
state_dict["visual.head.mlp.fc2.weight"].shape[0] | |
) | |
return out_dict | |
import re | |
for k, v in state_dict.items(): | |
k = k.replace("downsample_layers.0.", "stem.") | |
k = re.sub(r"stages.([0-9]+).([0-9]+)", r"stages.\1.blocks.\2", k) | |
k = re.sub( | |
r"downsample_layers.([0-9]+).([0-9]+)", r"stages.\1.downsample.\2", k | |
) | |
k = k.replace("dwconv", "conv_dw") | |
k = k.replace("pwconv", "mlp.fc") | |
if "grn" in k: | |
k = k.replace("grn.beta", "mlp.grn.bias") | |
k = k.replace("grn.ramma", "mlp.grn.weight") | |
v = v.reshape(v.shape[-1]) | |
k = k.replace("head.", "head.fc.") | |
if k.startswith("norm."): | |
k = k.replace("norm", "head.norm") | |
if v.ndim == 2 and "head" not in k: | |
model_shape = model.state_dict()[k].shape | |
v = v.reshape(model_shape) | |
out_dict[k] = v | |
return out_dict | |
def _create_convnext(variant, pretrained=False, **kwargs): | |
if kwargs.get("pretrained_cfg", "") == "fcmae": | |
# NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`) | |
# This is workaround loading with num_classes=0 w/o removing norm-layer. | |
kwargs.setdefault("pretrained_strict", False) | |
model = build_model_with_cfg( | |
ConvNeXt, | |
variant, | |
pretrained, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), | |
**kwargs, | |
) | |
return model | |
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt: | |
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]) | |
model = _create_convnext( | |
"convnext_large", pretrained=pretrained, **dict(model_args, **kwargs) | |
) | |
return model | |
class CLIP(nn.Module): | |
output_dict: torch.jit.Final[bool] | |
def __init__( | |
self, | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
quick_gelu: bool = False, | |
cast_dtype: Optional[torch.dtype] = None, | |
output_dict: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
self.output_dict = output_dict | |
self.visual = convnext_large() | |
class ConvNextVisionEncoder(nn.Module): | |
def __init__( | |
self, | |
): | |
super().__init__() | |
self.model_type = "convnext_large_d_320" | |
self.model_channel = [192, 384, 768, 1536] # stage 0-3 | |
clip_model = CLIP(**get_model_config(self.model_type), use_text=False) | |
# decompose stem and stages blocks in vision tower | |
self.vision_stem = clip_model.visual.stem | |
self.vision_stages = clip_model.visual.stages | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_feature = self.backbone( | |
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), | |
) | |
image_features.append(image_feature) | |
else: | |
image_features = self.backbone( | |
images.to(device=self.device, dtype=self.dtype), | |
) | |
return { | |
"image_features": image_features, | |
"last_feat": image_features[-1], | |
} | |
def backbone(self, images: torch.Tensor) -> Tuple[List[torch.Tensor], List[int]]: | |
"""Process the input images through the backbone network. | |
Inputs: | |
images (torch.Tensor): The input images. | |
Returns: | |
Tuple[List[torch.Tensor], List[int]]: A tuple containing a list of feature maps and a | |
ist of channels per level. | |
""" | |
with torch.no_grad(): | |
results = self.basic_forward(images) | |
feature_maps = [] | |
for _stage in results: | |
feature_maps.append(results[_stage].contiguous()) | |
return feature_maps | |
def basic_forward(self, images): | |
results = {} | |
x = self.vision_stem(images) | |
for _idx in range(len(self.vision_stages)): | |
x = self.vision_stages[_idx](x) | |
results[f"stage_{_idx}"] = x | |
return results | |
def dtype(self): | |
return self.vision_stem[0].weight.dtype | |
def device(self): | |
return self.vision_stem[0].weight.device | |
def config(self): | |
return self.vision_config | |
def hidden_size(self): | |
return sum(self.model_channel) | |
if __name__ == "__main__": | |
model = ConvNextVisionEncoder() | |
print(model.state_dict().keys()) | |