Upload 16 files
Browse files- added_tokens.json +128 -0
- clip.py +127 -0
- config.json +46 -0
- convnext.py +697 -0
- generation_config.json +16 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_rexseek.py +666 -0
- preprocessing_rexseek.py +259 -0
- preprocessor_config.json +28 -0
- processor_config.json +6 -0
- special_tokens_map.json +128 -0
- tokenizer_config.json +1145 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</ground>": 151766,
|
3 |
+
"</objects>": 151768,
|
4 |
+
"</tool_call>": 151658,
|
5 |
+
"<ground>": 151765,
|
6 |
+
"<obj0>": 151665,
|
7 |
+
"<obj10>": 151675,
|
8 |
+
"<obj11>": 151676,
|
9 |
+
"<obj12>": 151677,
|
10 |
+
"<obj13>": 151678,
|
11 |
+
"<obj14>": 151679,
|
12 |
+
"<obj15>": 151680,
|
13 |
+
"<obj16>": 151681,
|
14 |
+
"<obj17>": 151682,
|
15 |
+
"<obj18>": 151683,
|
16 |
+
"<obj19>": 151684,
|
17 |
+
"<obj1>": 151666,
|
18 |
+
"<obj20>": 151685,
|
19 |
+
"<obj21>": 151686,
|
20 |
+
"<obj22>": 151687,
|
21 |
+
"<obj23>": 151688,
|
22 |
+
"<obj24>": 151689,
|
23 |
+
"<obj25>": 151690,
|
24 |
+
"<obj26>": 151691,
|
25 |
+
"<obj27>": 151692,
|
26 |
+
"<obj28>": 151693,
|
27 |
+
"<obj29>": 151694,
|
28 |
+
"<obj2>": 151667,
|
29 |
+
"<obj30>": 151695,
|
30 |
+
"<obj31>": 151696,
|
31 |
+
"<obj32>": 151697,
|
32 |
+
"<obj33>": 151698,
|
33 |
+
"<obj34>": 151699,
|
34 |
+
"<obj35>": 151700,
|
35 |
+
"<obj36>": 151701,
|
36 |
+
"<obj37>": 151702,
|
37 |
+
"<obj38>": 151703,
|
38 |
+
"<obj39>": 151704,
|
39 |
+
"<obj3>": 151668,
|
40 |
+
"<obj40>": 151705,
|
41 |
+
"<obj41>": 151706,
|
42 |
+
"<obj42>": 151707,
|
43 |
+
"<obj43>": 151708,
|
44 |
+
"<obj44>": 151709,
|
45 |
+
"<obj45>": 151710,
|
46 |
+
"<obj46>": 151711,
|
47 |
+
"<obj47>": 151712,
|
48 |
+
"<obj48>": 151713,
|
49 |
+
"<obj49>": 151714,
|
50 |
+
"<obj4>": 151669,
|
51 |
+
"<obj50>": 151715,
|
52 |
+
"<obj51>": 151716,
|
53 |
+
"<obj52>": 151717,
|
54 |
+
"<obj53>": 151718,
|
55 |
+
"<obj54>": 151719,
|
56 |
+
"<obj55>": 151720,
|
57 |
+
"<obj56>": 151721,
|
58 |
+
"<obj57>": 151722,
|
59 |
+
"<obj58>": 151723,
|
60 |
+
"<obj59>": 151724,
|
61 |
+
"<obj5>": 151670,
|
62 |
+
"<obj60>": 151725,
|
63 |
+
"<obj61>": 151726,
|
64 |
+
"<obj62>": 151727,
|
65 |
+
"<obj63>": 151728,
|
66 |
+
"<obj64>": 151729,
|
67 |
+
"<obj65>": 151730,
|
68 |
+
"<obj66>": 151731,
|
69 |
+
"<obj67>": 151732,
|
70 |
+
"<obj68>": 151733,
|
71 |
+
"<obj69>": 151734,
|
72 |
+
"<obj6>": 151671,
|
73 |
+
"<obj70>": 151735,
|
74 |
+
"<obj71>": 151736,
|
75 |
+
"<obj72>": 151737,
|
76 |
+
"<obj73>": 151738,
|
77 |
+
"<obj74>": 151739,
|
78 |
+
"<obj75>": 151740,
|
79 |
+
"<obj76>": 151741,
|
80 |
+
"<obj77>": 151742,
|
81 |
+
"<obj78>": 151743,
|
82 |
+
"<obj79>": 151744,
|
83 |
+
"<obj7>": 151672,
|
84 |
+
"<obj80>": 151745,
|
85 |
+
"<obj81>": 151746,
|
86 |
+
"<obj82>": 151747,
|
87 |
+
"<obj83>": 151748,
|
88 |
+
"<obj84>": 151749,
|
89 |
+
"<obj85>": 151750,
|
90 |
+
"<obj86>": 151751,
|
91 |
+
"<obj87>": 151752,
|
92 |
+
"<obj88>": 151753,
|
93 |
+
"<obj89>": 151754,
|
94 |
+
"<obj8>": 151673,
|
95 |
+
"<obj90>": 151755,
|
96 |
+
"<obj91>": 151756,
|
97 |
+
"<obj92>": 151757,
|
98 |
+
"<obj93>": 151758,
|
99 |
+
"<obj94>": 151759,
|
100 |
+
"<obj95>": 151760,
|
101 |
+
"<obj96>": 151761,
|
102 |
+
"<obj97>": 151762,
|
103 |
+
"<obj98>": 151763,
|
104 |
+
"<obj99>": 151764,
|
105 |
+
"<obj9>": 151674,
|
106 |
+
"<objects>": 151767,
|
107 |
+
"<tool_call>": 151657,
|
108 |
+
"<|box_end|>": 151649,
|
109 |
+
"<|box_start|>": 151648,
|
110 |
+
"<|endoftext|>": 151643,
|
111 |
+
"<|file_sep|>": 151664,
|
112 |
+
"<|fim_middle|>": 151660,
|
113 |
+
"<|fim_pad|>": 151662,
|
114 |
+
"<|fim_prefix|>": 151659,
|
115 |
+
"<|fim_suffix|>": 151661,
|
116 |
+
"<|im_end|>": 151645,
|
117 |
+
"<|im_start|>": 151644,
|
118 |
+
"<|image_pad|>": 151655,
|
119 |
+
"<|object_ref_end|>": 151647,
|
120 |
+
"<|object_ref_start|>": 151646,
|
121 |
+
"<|quad_end|>": 151651,
|
122 |
+
"<|quad_start|>": 151650,
|
123 |
+
"<|repo_name|>": 151663,
|
124 |
+
"<|video_pad|>": 151656,
|
125 |
+
"<|vision_end|>": 151653,
|
126 |
+
"<|vision_pad|>": 151654,
|
127 |
+
"<|vision_start|>": 151652
|
128 |
+
}
|
clip.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
|
4 |
+
|
5 |
+
|
6 |
+
class CLIPVisionTower(nn.Module):
|
7 |
+
def __init__(self, vision_tower, args, freeze_vision_tower=False, delay_load=False):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.is_loaded = False
|
11 |
+
|
12 |
+
self.vision_tower_name = vision_tower
|
13 |
+
self.select_layer = args.mm_vision_select_layer
|
14 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
15 |
+
self.freeze_vision_tower = freeze_vision_tower
|
16 |
+
if not delay_load:
|
17 |
+
self.load_model()
|
18 |
+
elif getattr(args, "unfreeze_mm_vision_tower", False):
|
19 |
+
self.load_model()
|
20 |
+
else:
|
21 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
22 |
+
|
23 |
+
def load_model(self, device_map=None):
|
24 |
+
if self.is_loaded:
|
25 |
+
print(
|
26 |
+
"{} is already loaded, `load_model` called again, skipping.".format(
|
27 |
+
self.vision_tower_name
|
28 |
+
)
|
29 |
+
)
|
30 |
+
return
|
31 |
+
|
32 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(
|
33 |
+
self.vision_tower_name
|
34 |
+
)
|
35 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
36 |
+
self.vision_tower_name, device_map=device_map
|
37 |
+
)
|
38 |
+
|
39 |
+
if self.freeze_vision_tower:
|
40 |
+
self.vision_tower.requires_grad_(False)
|
41 |
+
|
42 |
+
self.is_loaded = True
|
43 |
+
|
44 |
+
def feature_select(self, image_forward_outs):
|
45 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
46 |
+
if self.select_feature == "patch":
|
47 |
+
image_features = image_features[:, 1:]
|
48 |
+
elif self.select_feature == "cls_patch":
|
49 |
+
image_features = image_features
|
50 |
+
else:
|
51 |
+
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
52 |
+
return image_features
|
53 |
+
|
54 |
+
def forward(self, images):
|
55 |
+
if type(images) is list:
|
56 |
+
image_features = []
|
57 |
+
for image in images:
|
58 |
+
if self.freeze_vision_tower:
|
59 |
+
with torch.no_grad():
|
60 |
+
image_forward_out = self.vision_tower(
|
61 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
62 |
+
output_hidden_states=True,
|
63 |
+
)
|
64 |
+
image_feature = self.feature_select(image_forward_out).to(
|
65 |
+
image.dtype
|
66 |
+
)
|
67 |
+
image_features.append(image_feature)
|
68 |
+
else:
|
69 |
+
image_forward_out = self.vision_tower(
|
70 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
71 |
+
output_hidden_states=True,
|
72 |
+
)
|
73 |
+
image_feature = self.feature_select(image_forward_out).to(
|
74 |
+
image.dtype
|
75 |
+
)
|
76 |
+
image_features.append(image_feature)
|
77 |
+
else:
|
78 |
+
if self.freeze_vision_tower:
|
79 |
+
with torch.no_grad():
|
80 |
+
image_forward_out = self.vision_tower(
|
81 |
+
images.to(device=self.device, dtype=self.dtype),
|
82 |
+
output_hidden_states=True,
|
83 |
+
)
|
84 |
+
image_features = self.feature_select(image_forward_out).to(
|
85 |
+
images.dtype
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
image_forward_outs = self.vision_tower(
|
89 |
+
images.to(device=self.device, dtype=self.dtype),
|
90 |
+
output_hidden_states=True,
|
91 |
+
)
|
92 |
+
image_features = self.feature_select(image_forward_outs).to(
|
93 |
+
images.dtype
|
94 |
+
)
|
95 |
+
|
96 |
+
return image_features
|
97 |
+
|
98 |
+
@property
|
99 |
+
def dummy_feature(self):
|
100 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def dtype(self):
|
104 |
+
return self.vision_tower.dtype
|
105 |
+
|
106 |
+
@property
|
107 |
+
def device(self):
|
108 |
+
return self.vision_tower.device
|
109 |
+
|
110 |
+
@property
|
111 |
+
def config(self):
|
112 |
+
if self.is_loaded:
|
113 |
+
return self.vision_tower.config
|
114 |
+
else:
|
115 |
+
return self.cfg_only
|
116 |
+
|
117 |
+
@property
|
118 |
+
def hidden_size(self):
|
119 |
+
return self.config.hidden_size
|
120 |
+
|
121 |
+
@property
|
122 |
+
def num_patches_per_side(self):
|
123 |
+
return self.config.image_size // self.config.patch_size
|
124 |
+
|
125 |
+
@property
|
126 |
+
def num_patches(self):
|
127 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RexSeekQwenForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "modeling_rexseek.RexSeekQwenConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_rexseek.RexSeekQwenForCausalLM"
|
8 |
+
},
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"bos_token_id": 151643,
|
11 |
+
"eos_token_id": 151645,
|
12 |
+
"freeze_mm_mlp_adapter": false,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 2048,
|
15 |
+
"image_aspect_ratio": "pad",
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 11008,
|
18 |
+
"max_position_embeddings": 32768,
|
19 |
+
"max_window_layers": 70,
|
20 |
+
"mm_hidden_size": 2560,
|
21 |
+
"mm_patch_merge_type": "flat",
|
22 |
+
"mm_projector_lr": null,
|
23 |
+
"mm_projector_type": "mlp2x_gelu",
|
24 |
+
"mm_vision_select_feature": "patch",
|
25 |
+
"mm_vision_select_layer": -2,
|
26 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
27 |
+
"model_type": "rexseek_qwen",
|
28 |
+
"num_attention_heads": 16,
|
29 |
+
"num_hidden_layers": 36,
|
30 |
+
"num_key_value_heads": 2,
|
31 |
+
"object_hidden_size": 2880,
|
32 |
+
"rms_norm_eps": 1e-06,
|
33 |
+
"rope_scaling": null,
|
34 |
+
"rope_theta": 1000000.0,
|
35 |
+
"sliding_window": null,
|
36 |
+
"tie_word_embeddings": true,
|
37 |
+
"tokenizer_model_max_length": 2048,
|
38 |
+
"tokenizer_padding_side": "right",
|
39 |
+
"torch_dtype": "bfloat16",
|
40 |
+
"transformers_version": "4.48.0",
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_sliding_window": false,
|
44 |
+
"vis_during_training_prob": 0.0,
|
45 |
+
"vocab_size": 151769
|
46 |
+
}
|
convnext.py
ADDED
@@ -0,0 +1,697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from typing import Callable, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from open_clip.factory import get_model_config
|
7 |
+
from open_clip.model import CLIPVisionCfg
|
8 |
+
from timm.layers import (
|
9 |
+
AvgPool2dSame,
|
10 |
+
ClassifierHead,
|
11 |
+
DropPath,
|
12 |
+
GlobalResponseNormMlp,
|
13 |
+
LayerNorm,
|
14 |
+
LayerNorm2d,
|
15 |
+
Mlp,
|
16 |
+
NormMlpClassifierHead,
|
17 |
+
create_conv2d,
|
18 |
+
get_act_layer,
|
19 |
+
make_divisible,
|
20 |
+
to_ntuple,
|
21 |
+
trunc_normal_,
|
22 |
+
)
|
23 |
+
from timm.models._builder import build_model_with_cfg
|
24 |
+
from timm.models._features import feature_take_indices
|
25 |
+
from timm.models._manipulate import checkpoint_seq, named_apply
|
26 |
+
|
27 |
+
__all__ = ["ConvNeXt"] # model_registry will add each entrypoint fn to this
|
28 |
+
|
29 |
+
|
30 |
+
class Downsample(nn.Module):
|
31 |
+
|
32 |
+
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
|
33 |
+
super().__init__()
|
34 |
+
avg_stride = stride if dilation == 1 else 1
|
35 |
+
if stride > 1 or dilation > 1:
|
36 |
+
avg_pool_fn = (
|
37 |
+
AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
38 |
+
)
|
39 |
+
self.pool = avg_pool_fn(
|
40 |
+
2, avg_stride, ceil_mode=True, count_include_pad=False
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
self.pool = nn.Identity()
|
44 |
+
|
45 |
+
if in_chs != out_chs:
|
46 |
+
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
|
47 |
+
else:
|
48 |
+
self.conv = nn.Identity()
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = self.pool(x)
|
52 |
+
x = self.conv(x)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class ConvNeXtBlock(nn.Module):
|
57 |
+
"""ConvNeXt Block
|
58 |
+
There are two equivalent implementations:
|
59 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
60 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
61 |
+
|
62 |
+
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
|
63 |
+
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
|
64 |
+
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
in_chs: int,
|
70 |
+
out_chs: Optional[int] = None,
|
71 |
+
kernel_size: int = 7,
|
72 |
+
stride: int = 1,
|
73 |
+
dilation: Union[int, Tuple[int, int]] = (1, 1),
|
74 |
+
mlp_ratio: float = 4,
|
75 |
+
conv_mlp: bool = False,
|
76 |
+
conv_bias: bool = True,
|
77 |
+
use_grn: bool = False,
|
78 |
+
ls_init_value: Optional[float] = 1e-6,
|
79 |
+
act_layer: Union[str, Callable] = "gelu",
|
80 |
+
norm_layer: Optional[Callable] = None,
|
81 |
+
drop_path: float = 0.0,
|
82 |
+
):
|
83 |
+
"""
|
84 |
+
|
85 |
+
Args:
|
86 |
+
in_chs: Block input channels.
|
87 |
+
out_chs: Block output channels (same as in_chs if None).
|
88 |
+
kernel_size: Depthwise convolution kernel size.
|
89 |
+
stride: Stride of depthwise convolution.
|
90 |
+
dilation: Tuple specifying input and output dilation of block.
|
91 |
+
mlp_ratio: MLP expansion ratio.
|
92 |
+
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
|
93 |
+
conv_bias: Apply bias for all convolution (linear) layers.
|
94 |
+
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
|
95 |
+
ls_init_value: Layer-scale init values, layer-scale applied if not None.
|
96 |
+
act_layer: Activation layer.
|
97 |
+
norm_layer: Normalization layer (defaults to LN if not specified).
|
98 |
+
drop_path: Stochastic depth probability.
|
99 |
+
"""
|
100 |
+
super().__init__()
|
101 |
+
out_chs = out_chs or in_chs
|
102 |
+
dilation = to_ntuple(2)(dilation)
|
103 |
+
act_layer = get_act_layer(act_layer)
|
104 |
+
if not norm_layer:
|
105 |
+
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
|
106 |
+
mlp_layer = partial(
|
107 |
+
GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp
|
108 |
+
)
|
109 |
+
self.use_conv_mlp = conv_mlp
|
110 |
+
self.conv_dw = create_conv2d(
|
111 |
+
in_chs,
|
112 |
+
out_chs,
|
113 |
+
kernel_size=kernel_size,
|
114 |
+
stride=stride,
|
115 |
+
dilation=dilation[0],
|
116 |
+
depthwise=True,
|
117 |
+
bias=conv_bias,
|
118 |
+
)
|
119 |
+
self.norm = norm_layer(out_chs)
|
120 |
+
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
|
121 |
+
self.ramma = (
|
122 |
+
nn.Parameter(ls_init_value * torch.ones(out_chs))
|
123 |
+
if ls_init_value is not None
|
124 |
+
else None
|
125 |
+
)
|
126 |
+
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
127 |
+
self.shortcut = Downsample(
|
128 |
+
in_chs, out_chs, stride=stride, dilation=dilation[0]
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.shortcut = nn.Identity()
|
132 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
shortcut = x
|
136 |
+
x = self.conv_dw(x)
|
137 |
+
if self.use_conv_mlp:
|
138 |
+
x = self.norm(x)
|
139 |
+
x = self.mlp(x)
|
140 |
+
else:
|
141 |
+
x = x.permute(0, 2, 3, 1)
|
142 |
+
x = self.norm(x)
|
143 |
+
x = self.mlp(x)
|
144 |
+
x = x.permute(0, 3, 1, 2)
|
145 |
+
if self.ramma is not None:
|
146 |
+
x = x.mul(self.ramma.reshape(1, -1, 1, 1))
|
147 |
+
|
148 |
+
x = self.drop_path(x) + self.shortcut(shortcut)
|
149 |
+
return x
|
150 |
+
|
151 |
+
|
152 |
+
class ConvNeXtStage(nn.Module):
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
in_chs,
|
157 |
+
out_chs,
|
158 |
+
kernel_size=7,
|
159 |
+
stride=2,
|
160 |
+
depth=2,
|
161 |
+
dilation=(1, 1),
|
162 |
+
drop_path_rates=None,
|
163 |
+
ls_init_value=1.0,
|
164 |
+
conv_mlp=False,
|
165 |
+
conv_bias=True,
|
166 |
+
use_grn=False,
|
167 |
+
act_layer="gelu",
|
168 |
+
norm_layer=None,
|
169 |
+
norm_layer_cl=None,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
self.grad_checkpointing = False
|
173 |
+
|
174 |
+
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
|
175 |
+
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
|
176 |
+
pad = (
|
177 |
+
"same" if dilation[1] > 1 else 0
|
178 |
+
) # same padding needed if dilation used
|
179 |
+
self.downsample = nn.Sequential(
|
180 |
+
norm_layer(in_chs),
|
181 |
+
create_conv2d(
|
182 |
+
in_chs,
|
183 |
+
out_chs,
|
184 |
+
kernel_size=ds_ks,
|
185 |
+
stride=stride,
|
186 |
+
dilation=dilation[0],
|
187 |
+
padding=pad,
|
188 |
+
bias=conv_bias,
|
189 |
+
),
|
190 |
+
)
|
191 |
+
in_chs = out_chs
|
192 |
+
else:
|
193 |
+
self.downsample = nn.Identity()
|
194 |
+
|
195 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
196 |
+
stage_blocks = []
|
197 |
+
for i in range(depth):
|
198 |
+
stage_blocks.append(
|
199 |
+
ConvNeXtBlock(
|
200 |
+
in_chs=in_chs,
|
201 |
+
out_chs=out_chs,
|
202 |
+
kernel_size=kernel_size,
|
203 |
+
dilation=dilation[1],
|
204 |
+
drop_path=drop_path_rates[i],
|
205 |
+
ls_init_value=ls_init_value,
|
206 |
+
conv_mlp=conv_mlp,
|
207 |
+
conv_bias=conv_bias,
|
208 |
+
use_grn=use_grn,
|
209 |
+
act_layer=act_layer,
|
210 |
+
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
|
211 |
+
)
|
212 |
+
)
|
213 |
+
in_chs = out_chs
|
214 |
+
self.blocks = nn.Sequential(*stage_blocks)
|
215 |
+
|
216 |
+
def forward(self, x):
|
217 |
+
x = self.downsample(x)
|
218 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
219 |
+
x = checkpoint_seq(self.blocks, x)
|
220 |
+
else:
|
221 |
+
x = self.blocks(x)
|
222 |
+
return x
|
223 |
+
|
224 |
+
|
225 |
+
class ConvNeXt(nn.Module):
|
226 |
+
r"""ConvNeXt
|
227 |
+
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(
|
231 |
+
self,
|
232 |
+
in_chans: int = 3,
|
233 |
+
num_classes: int = 1000,
|
234 |
+
global_pool: str = "avg",
|
235 |
+
output_stride: int = 32,
|
236 |
+
depths: Tuple[int, ...] = (3, 3, 9, 3),
|
237 |
+
dims: Tuple[int, ...] = (96, 192, 384, 768),
|
238 |
+
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
|
239 |
+
ls_init_value: Optional[float] = 1e-6,
|
240 |
+
stem_type: str = "patch",
|
241 |
+
patch_size: int = 4,
|
242 |
+
head_init_scale: float = 1.0,
|
243 |
+
head_norm_first: bool = False,
|
244 |
+
head_hidden_size: Optional[int] = None,
|
245 |
+
conv_mlp: bool = False,
|
246 |
+
conv_bias: bool = True,
|
247 |
+
use_grn: bool = False,
|
248 |
+
act_layer: Union[str, Callable] = "gelu",
|
249 |
+
norm_layer: Optional[Union[str, Callable]] = None,
|
250 |
+
norm_eps: Optional[float] = None,
|
251 |
+
drop_rate: float = 0.0,
|
252 |
+
drop_path_rate: float = 0.0,
|
253 |
+
):
|
254 |
+
"""
|
255 |
+
Args:
|
256 |
+
in_chans: Number of input image channels.
|
257 |
+
num_classes: Number of classes for classification head.
|
258 |
+
global_pool: Global pooling type.
|
259 |
+
output_stride: Output stride of network, one of (8, 16, 32).
|
260 |
+
depths: Number of blocks at each stage.
|
261 |
+
dims: Feature dimension at each stage.
|
262 |
+
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
|
263 |
+
ls_init_value: Init value for Layer Scale, disabled if None.
|
264 |
+
stem_type: Type of stem.
|
265 |
+
patch_size: Stem patch size for patch stem.
|
266 |
+
head_init_scale: Init scaling value for classifier weights and biases.
|
267 |
+
head_norm_first: Apply normalization before global pool + head.
|
268 |
+
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
|
269 |
+
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
|
270 |
+
conv_bias: Use bias layers w/ all convolutions.
|
271 |
+
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
|
272 |
+
act_layer: Activation layer type.
|
273 |
+
norm_layer: Normalization layer type.
|
274 |
+
drop_rate: Head pre-classifier dropout rate.
|
275 |
+
drop_path_rate: Stochastic depth drop rate.
|
276 |
+
"""
|
277 |
+
super().__init__()
|
278 |
+
assert output_stride in (8, 16, 32)
|
279 |
+
kernel_sizes = to_ntuple(4)(kernel_sizes)
|
280 |
+
if norm_layer is None:
|
281 |
+
norm_layer = LayerNorm2d
|
282 |
+
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
|
283 |
+
if norm_eps is not None:
|
284 |
+
norm_layer = partial(norm_layer, eps=norm_eps)
|
285 |
+
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
286 |
+
else:
|
287 |
+
assert (
|
288 |
+
conv_mlp
|
289 |
+
), "If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input"
|
290 |
+
norm_layer_cl = norm_layer
|
291 |
+
if norm_eps is not None:
|
292 |
+
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
293 |
+
|
294 |
+
self.num_classes = num_classes
|
295 |
+
self.drop_rate = drop_rate
|
296 |
+
self.feature_info = []
|
297 |
+
|
298 |
+
assert stem_type in ("patch", "overlap", "overlap_tiered")
|
299 |
+
if stem_type == "patch":
|
300 |
+
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
|
301 |
+
self.stem = nn.Sequential(
|
302 |
+
nn.Conv2d(
|
303 |
+
in_chans,
|
304 |
+
dims[0],
|
305 |
+
kernel_size=patch_size,
|
306 |
+
stride=patch_size,
|
307 |
+
bias=conv_bias,
|
308 |
+
),
|
309 |
+
norm_layer(dims[0]),
|
310 |
+
)
|
311 |
+
stem_stride = patch_size
|
312 |
+
else:
|
313 |
+
mid_chs = make_divisible(dims[0] // 2) if "tiered" in stem_type else dims[0]
|
314 |
+
self.stem = nn.Sequential(
|
315 |
+
nn.Conv2d(
|
316 |
+
in_chans,
|
317 |
+
mid_chs,
|
318 |
+
kernel_size=3,
|
319 |
+
stride=2,
|
320 |
+
padding=1,
|
321 |
+
bias=conv_bias,
|
322 |
+
),
|
323 |
+
nn.Conv2d(
|
324 |
+
mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias
|
325 |
+
),
|
326 |
+
norm_layer(dims[0]),
|
327 |
+
)
|
328 |
+
stem_stride = 4
|
329 |
+
|
330 |
+
self.stages = nn.Sequential()
|
331 |
+
dp_rates = [
|
332 |
+
x.tolist()
|
333 |
+
for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)
|
334 |
+
]
|
335 |
+
stages = []
|
336 |
+
prev_chs = dims[0]
|
337 |
+
curr_stride = stem_stride
|
338 |
+
dilation = 1
|
339 |
+
# 4 feature resolution stages, each consisting of multiple residual blocks
|
340 |
+
for i in range(4):
|
341 |
+
stride = 2 if curr_stride == 2 or i > 0 else 1
|
342 |
+
if curr_stride >= output_stride and stride > 1:
|
343 |
+
dilation *= stride
|
344 |
+
stride = 1
|
345 |
+
curr_stride *= stride
|
346 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
347 |
+
out_chs = dims[i]
|
348 |
+
stages.append(
|
349 |
+
ConvNeXtStage(
|
350 |
+
prev_chs,
|
351 |
+
out_chs,
|
352 |
+
kernel_size=kernel_sizes[i],
|
353 |
+
stride=stride,
|
354 |
+
dilation=(first_dilation, dilation),
|
355 |
+
depth=depths[i],
|
356 |
+
drop_path_rates=dp_rates[i],
|
357 |
+
ls_init_value=ls_init_value,
|
358 |
+
conv_mlp=conv_mlp,
|
359 |
+
conv_bias=conv_bias,
|
360 |
+
use_grn=use_grn,
|
361 |
+
act_layer=act_layer,
|
362 |
+
norm_layer=norm_layer,
|
363 |
+
norm_layer_cl=norm_layer_cl,
|
364 |
+
)
|
365 |
+
)
|
366 |
+
prev_chs = out_chs
|
367 |
+
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
|
368 |
+
self.feature_info += [
|
369 |
+
dict(num_chs=prev_chs, reduction=curr_stride, module=f"stages.{i}")
|
370 |
+
]
|
371 |
+
self.stages = nn.Sequential(*stages)
|
372 |
+
self.num_features = self.head_hidden_size = prev_chs
|
373 |
+
|
374 |
+
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
|
375 |
+
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
|
376 |
+
if head_norm_first:
|
377 |
+
assert not head_hidden_size
|
378 |
+
self.norm_pre = norm_layer(self.num_features)
|
379 |
+
self.head = ClassifierHead(
|
380 |
+
self.num_features,
|
381 |
+
num_classes,
|
382 |
+
pool_type=global_pool,
|
383 |
+
drop_rate=self.drop_rate,
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
self.norm_pre = nn.Identity()
|
387 |
+
self.head = NormMlpClassifierHead(
|
388 |
+
self.num_features,
|
389 |
+
num_classes,
|
390 |
+
hidden_size=head_hidden_size,
|
391 |
+
pool_type=global_pool,
|
392 |
+
drop_rate=self.drop_rate,
|
393 |
+
norm_layer=norm_layer,
|
394 |
+
act_layer="gelu",
|
395 |
+
)
|
396 |
+
self.head_hidden_size = self.head.num_features
|
397 |
+
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
|
398 |
+
|
399 |
+
@torch.jit.ignore
|
400 |
+
def group_matcher(self, coarse=False):
|
401 |
+
return dict(
|
402 |
+
stem=r"^stem",
|
403 |
+
blocks=(
|
404 |
+
r"^stages\.(\d+)"
|
405 |
+
if coarse
|
406 |
+
else [
|
407 |
+
(r"^stages\.(\d+)\.downsample", (0,)), # blocks
|
408 |
+
(r"^stages\.(\d+)\.blocks\.(\d+)", None),
|
409 |
+
(r"^norm_pre", (99999,)),
|
410 |
+
]
|
411 |
+
),
|
412 |
+
)
|
413 |
+
|
414 |
+
@torch.jit.ignore
|
415 |
+
def set_grad_checkpointing(self, enable=True):
|
416 |
+
for s in self.stages:
|
417 |
+
s.grad_checkpointing = enable
|
418 |
+
|
419 |
+
@torch.jit.ignore
|
420 |
+
def get_classifier(self) -> nn.Module:
|
421 |
+
return self.head.fc
|
422 |
+
|
423 |
+
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
|
424 |
+
self.num_classes = num_classes
|
425 |
+
self.head.reset(num_classes, global_pool)
|
426 |
+
|
427 |
+
def forward_intermediates(
|
428 |
+
self,
|
429 |
+
x: torch.Tensor,
|
430 |
+
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
431 |
+
norm: bool = False,
|
432 |
+
stop_early: bool = False,
|
433 |
+
output_fmt: str = "NCHW",
|
434 |
+
intermediates_only: bool = False,
|
435 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
436 |
+
"""Forward features that returns intermediates.
|
437 |
+
|
438 |
+
Args:
|
439 |
+
x: Input image tensor
|
440 |
+
indices: Take last n blocks if int, all if None, select matching indices if sequence
|
441 |
+
norm: Apply norm layer to compatible intermediates
|
442 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
443 |
+
output_fmt: Shape of intermediate feature outputs
|
444 |
+
intermediates_only: Only return intermediate features
|
445 |
+
Returns:
|
446 |
+
|
447 |
+
"""
|
448 |
+
assert output_fmt in ("NCHW",), "Output shape must be NCHW."
|
449 |
+
intermediates = []
|
450 |
+
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
|
451 |
+
|
452 |
+
# forward pass
|
453 |
+
feat_idx = 0 # stem is index 0
|
454 |
+
x = self.stem(x)
|
455 |
+
if feat_idx in take_indices:
|
456 |
+
intermediates.append(x)
|
457 |
+
|
458 |
+
if (
|
459 |
+
torch.jit.is_scripting() or not stop_early
|
460 |
+
): # can't slice blocks in torchscript
|
461 |
+
stages = self.stages
|
462 |
+
else:
|
463 |
+
stages = self.stages[:max_index]
|
464 |
+
for stage in stages:
|
465 |
+
feat_idx += 1
|
466 |
+
x = stage(x)
|
467 |
+
if feat_idx in take_indices:
|
468 |
+
# NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled
|
469 |
+
intermediates.append(x)
|
470 |
+
|
471 |
+
if intermediates_only:
|
472 |
+
return intermediates
|
473 |
+
|
474 |
+
x = self.norm_pre(x)
|
475 |
+
|
476 |
+
return x, intermediates
|
477 |
+
|
478 |
+
def prune_intermediate_layers(
|
479 |
+
self,
|
480 |
+
indices: Union[int, List[int], Tuple[int]] = 1,
|
481 |
+
prune_norm: bool = False,
|
482 |
+
prune_head: bool = True,
|
483 |
+
):
|
484 |
+
"""Prune layers not required for specified intermediates."""
|
485 |
+
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
|
486 |
+
self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0
|
487 |
+
if prune_norm:
|
488 |
+
self.norm_pre = nn.Identity()
|
489 |
+
if prune_head:
|
490 |
+
self.reset_classifier(0, "")
|
491 |
+
return take_indices
|
492 |
+
|
493 |
+
def forward_features(self, x):
|
494 |
+
x = self.stem(x)
|
495 |
+
x = self.stages(x)
|
496 |
+
x = self.norm_pre(x)
|
497 |
+
return x
|
498 |
+
|
499 |
+
def forward_head(self, x, pre_logits: bool = False):
|
500 |
+
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
|
501 |
+
|
502 |
+
def forward(self, x):
|
503 |
+
x = self.forward_features(x)
|
504 |
+
x = self.forward_head(x)
|
505 |
+
return x
|
506 |
+
|
507 |
+
|
508 |
+
def _init_weights(module, name=None, head_init_scale=1.0):
|
509 |
+
if isinstance(module, nn.Conv2d):
|
510 |
+
trunc_normal_(module.weight, std=0.02)
|
511 |
+
if module.bias is not None:
|
512 |
+
nn.init.zeros_(module.bias)
|
513 |
+
elif isinstance(module, nn.Linear):
|
514 |
+
trunc_normal_(module.weight, std=0.02)
|
515 |
+
nn.init.zeros_(module.bias)
|
516 |
+
if name and "head." in name:
|
517 |
+
module.weight.data.mul_(head_init_scale)
|
518 |
+
module.bias.data.mul_(head_init_scale)
|
519 |
+
|
520 |
+
|
521 |
+
def checkpoint_filter_fn(state_dict, model):
|
522 |
+
"""Remap FB checkpoints -> timm"""
|
523 |
+
if "head.norm.weight" in state_dict or "norm_pre.weight" in state_dict:
|
524 |
+
return state_dict # non-FB checkpoint
|
525 |
+
if "model" in state_dict:
|
526 |
+
state_dict = state_dict["model"]
|
527 |
+
|
528 |
+
out_dict = {}
|
529 |
+
if "visual.trunk.stem.0.weight" in state_dict:
|
530 |
+
out_dict = {
|
531 |
+
k.replace("visual.trunk.", ""): v
|
532 |
+
for k, v in state_dict.items()
|
533 |
+
if k.startswith("visual.trunk.")
|
534 |
+
}
|
535 |
+
if "visual.head.proj.weight" in state_dict:
|
536 |
+
out_dict["head.fc.weight"] = state_dict["visual.head.proj.weight"]
|
537 |
+
out_dict["head.fc.bias"] = torch.zeros(
|
538 |
+
state_dict["visual.head.proj.weight"].shape[0]
|
539 |
+
)
|
540 |
+
elif "visual.head.mlp.fc1.weight" in state_dict:
|
541 |
+
out_dict["head.pre_logits.fc.weight"] = state_dict[
|
542 |
+
"visual.head.mlp.fc1.weight"
|
543 |
+
]
|
544 |
+
out_dict["head.pre_logits.fc.bias"] = state_dict["visual.head.mlp.fc1.bias"]
|
545 |
+
out_dict["head.fc.weight"] = state_dict["visual.head.mlp.fc2.weight"]
|
546 |
+
out_dict["head.fc.bias"] = torch.zeros(
|
547 |
+
state_dict["visual.head.mlp.fc2.weight"].shape[0]
|
548 |
+
)
|
549 |
+
return out_dict
|
550 |
+
|
551 |
+
import re
|
552 |
+
|
553 |
+
for k, v in state_dict.items():
|
554 |
+
k = k.replace("downsample_layers.0.", "stem.")
|
555 |
+
k = re.sub(r"stages.([0-9]+).([0-9]+)", r"stages.\1.blocks.\2", k)
|
556 |
+
k = re.sub(
|
557 |
+
r"downsample_layers.([0-9]+).([0-9]+)", r"stages.\1.downsample.\2", k
|
558 |
+
)
|
559 |
+
k = k.replace("dwconv", "conv_dw")
|
560 |
+
k = k.replace("pwconv", "mlp.fc")
|
561 |
+
if "grn" in k:
|
562 |
+
k = k.replace("grn.beta", "mlp.grn.bias")
|
563 |
+
k = k.replace("grn.ramma", "mlp.grn.weight")
|
564 |
+
v = v.reshape(v.shape[-1])
|
565 |
+
k = k.replace("head.", "head.fc.")
|
566 |
+
if k.startswith("norm."):
|
567 |
+
k = k.replace("norm", "head.norm")
|
568 |
+
if v.ndim == 2 and "head" not in k:
|
569 |
+
model_shape = model.state_dict()[k].shape
|
570 |
+
v = v.reshape(model_shape)
|
571 |
+
out_dict[k] = v
|
572 |
+
|
573 |
+
return out_dict
|
574 |
+
|
575 |
+
|
576 |
+
def _create_convnext(variant, pretrained=False, **kwargs):
|
577 |
+
if kwargs.get("pretrained_cfg", "") == "fcmae":
|
578 |
+
# NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
|
579 |
+
# This is workaround loading with num_classes=0 w/o removing norm-layer.
|
580 |
+
kwargs.setdefault("pretrained_strict", False)
|
581 |
+
|
582 |
+
model = build_model_with_cfg(
|
583 |
+
ConvNeXt,
|
584 |
+
variant,
|
585 |
+
pretrained,
|
586 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
587 |
+
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
|
588 |
+
**kwargs,
|
589 |
+
)
|
590 |
+
return model
|
591 |
+
|
592 |
+
|
593 |
+
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt:
|
594 |
+
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
|
595 |
+
model = _create_convnext(
|
596 |
+
"convnext_large", pretrained=pretrained, **dict(model_args, **kwargs)
|
597 |
+
)
|
598 |
+
return model
|
599 |
+
|
600 |
+
|
601 |
+
class CLIP(nn.Module):
|
602 |
+
output_dict: torch.jit.Final[bool]
|
603 |
+
|
604 |
+
def __init__(
|
605 |
+
self,
|
606 |
+
embed_dim: int,
|
607 |
+
vision_cfg: CLIPVisionCfg,
|
608 |
+
quick_gelu: bool = False,
|
609 |
+
cast_dtype: Optional[torch.dtype] = None,
|
610 |
+
output_dict: bool = False,
|
611 |
+
**kwargs,
|
612 |
+
):
|
613 |
+
super().__init__()
|
614 |
+
self.output_dict = output_dict
|
615 |
+
|
616 |
+
self.visual = convnext_large()
|
617 |
+
|
618 |
+
|
619 |
+
class ConvNextVisionEncoder(nn.Module):
|
620 |
+
def __init__(
|
621 |
+
self,
|
622 |
+
):
|
623 |
+
super().__init__()
|
624 |
+
self.model_type = "convnext_large_d_320"
|
625 |
+
self.model_channel = [192, 384, 768, 1536] # stage 0-3
|
626 |
+
|
627 |
+
clip_model = CLIP(**get_model_config(self.model_type), use_text=False)
|
628 |
+
|
629 |
+
# decompose stem and stages blocks in vision tower
|
630 |
+
self.vision_stem = clip_model.visual.stem
|
631 |
+
self.vision_stages = clip_model.visual.stages
|
632 |
+
|
633 |
+
def forward(self, images):
|
634 |
+
|
635 |
+
if type(images) is list:
|
636 |
+
image_features = []
|
637 |
+
for image in images:
|
638 |
+
image_feature = self.backbone(
|
639 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
640 |
+
)
|
641 |
+
image_features.append(image_feature)
|
642 |
+
else:
|
643 |
+
image_features = self.backbone(
|
644 |
+
images.to(device=self.device, dtype=self.dtype),
|
645 |
+
)
|
646 |
+
|
647 |
+
return {
|
648 |
+
"image_features": image_features,
|
649 |
+
"last_feat": image_features[-1],
|
650 |
+
}
|
651 |
+
|
652 |
+
def backbone(self, images: torch.Tensor) -> Tuple[List[torch.Tensor], List[int]]:
|
653 |
+
"""Process the input images through the backbone network.
|
654 |
+
|
655 |
+
Inputs:
|
656 |
+
images (torch.Tensor): The input images.
|
657 |
+
|
658 |
+
Returns:
|
659 |
+
Tuple[List[torch.Tensor], List[int]]: A tuple containing a list of feature maps and a
|
660 |
+
ist of channels per level.
|
661 |
+
"""
|
662 |
+
with torch.no_grad():
|
663 |
+
results = self.basic_forward(images)
|
664 |
+
feature_maps = []
|
665 |
+
|
666 |
+
for _stage in results:
|
667 |
+
feature_maps.append(results[_stage].contiguous())
|
668 |
+
return feature_maps
|
669 |
+
|
670 |
+
def basic_forward(self, images):
|
671 |
+
results = {}
|
672 |
+
x = self.vision_stem(images)
|
673 |
+
for _idx in range(len(self.vision_stages)):
|
674 |
+
x = self.vision_stages[_idx](x)
|
675 |
+
results[f"stage_{_idx}"] = x
|
676 |
+
return results
|
677 |
+
|
678 |
+
@property
|
679 |
+
def dtype(self):
|
680 |
+
return self.vision_stem[0].weight.dtype
|
681 |
+
|
682 |
+
@property
|
683 |
+
def device(self):
|
684 |
+
return self.vision_stem[0].weight.device
|
685 |
+
|
686 |
+
@property
|
687 |
+
def config(self):
|
688 |
+
return self.vision_config
|
689 |
+
|
690 |
+
@property
|
691 |
+
def hidden_size(self):
|
692 |
+
return sum(self.model_channel)
|
693 |
+
|
694 |
+
|
695 |
+
if __name__ == "__main__":
|
696 |
+
model = ConvNextVisionEncoder()
|
697 |
+
print(model.state_dict().keys())
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_implementation": "flash_attention_2",
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"delay_load": false,
|
5 |
+
"do_sample": true,
|
6 |
+
"eos_token_id": [
|
7 |
+
151645,
|
8 |
+
151643
|
9 |
+
],
|
10 |
+
"pad_token_id": 151643,
|
11 |
+
"repetition_penalty": 1.05,
|
12 |
+
"temperature": 0.7,
|
13 |
+
"top_k": 20,
|
14 |
+
"top_p": 0.8,
|
15 |
+
"transformers_version": "4.48.0"
|
16 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9eaba82827e894601eb5fe8338dd1c9b146ab749ab07287950b9069823743d1
|
3 |
+
size 4956876272
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab2bf0f72bd76bb22ec2e430f012067f16faeef970b43ce64abefc3777fcb1b4
|
3 |
+
size 2874661528
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_rexseek.py
ADDED
@@ -0,0 +1,666 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from typing import List, Optional, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
from torchvision.ops import roi_align
|
12 |
+
from transformers import (
|
13 |
+
AutoConfig,
|
14 |
+
AutoModel,
|
15 |
+
AutoModelForCausalLM,
|
16 |
+
Qwen2Config,
|
17 |
+
Qwen2ForCausalLM,
|
18 |
+
StoppingCriteria,
|
19 |
+
StoppingCriteriaList,
|
20 |
+
)
|
21 |
+
from transformers.generation.utils import GenerateOutput
|
22 |
+
from transformers.utils import logging, strtobool
|
23 |
+
|
24 |
+
from .clip import CLIPVisionTower
|
25 |
+
from .convnext import ConvNextVisionEncoder
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
|
30 |
+
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
|
31 |
+
|
32 |
+
IGNORE_INDEX = -100
|
33 |
+
DEFAULT_PAD_TOKEN_INDEX = 0
|
34 |
+
IMAGE_TOKEN_INDEX = -200
|
35 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
36 |
+
|
37 |
+
# For Objects
|
38 |
+
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
|
39 |
+
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
|
40 |
+
DEFAULT_OBJECT_INDEX = -300
|
41 |
+
|
42 |
+
# For Grounding
|
43 |
+
DEFAULT_GROUNDING_START = "<ground>"
|
44 |
+
DEFAULT_GROUNDING_END = "</ground>"
|
45 |
+
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
|
46 |
+
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
|
47 |
+
|
48 |
+
|
49 |
+
def is_fsdp_enabled():
|
50 |
+
return (
|
51 |
+
torch.distributed.is_available()
|
52 |
+
and torch.distributed.is_initialized()
|
53 |
+
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
|
54 |
+
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
class IdentityMap(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
def forward(self, x, *args, **kwargs):
|
63 |
+
return x
|
64 |
+
|
65 |
+
@property
|
66 |
+
def config(self):
|
67 |
+
return {"mm_projector_type": "identity"}
|
68 |
+
|
69 |
+
|
70 |
+
class SimpleResBlock(nn.Module):
|
71 |
+
def __init__(self, channels):
|
72 |
+
super().__init__()
|
73 |
+
self.pre_norm = nn.LayerNorm(channels)
|
74 |
+
|
75 |
+
self.proj = nn.Sequential(
|
76 |
+
nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
|
77 |
+
)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = self.pre_norm(x)
|
81 |
+
return x + self.proj(x)
|
82 |
+
|
83 |
+
|
84 |
+
def build_vision_projector(config, start_hidden_size, delay_load=False, **kwargs):
|
85 |
+
projector_type = "mlp2x_gelu"
|
86 |
+
|
87 |
+
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
|
88 |
+
if mlp_gelu_match:
|
89 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
90 |
+
modules = [nn.Linear(start_hidden_size, config.hidden_size)]
|
91 |
+
for _ in range(1, mlp_depth):
|
92 |
+
modules.append(nn.GELU())
|
93 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
94 |
+
return nn.Sequential(*modules)
|
95 |
+
|
96 |
+
if projector_type == "identity":
|
97 |
+
return IdentityMap()
|
98 |
+
|
99 |
+
raise ValueError(f"Unknown projector type: {projector_type}")
|
100 |
+
|
101 |
+
|
102 |
+
def get_token_slices(input_ids: torch.Tensor):
|
103 |
+
"""
|
104 |
+
Get slices of tokens based on special markers in the input tensor.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
input_ids (torch.Tensor): A tensor of token IDs where IMAGE_TOKEN_INDEX represents an image token,
|
108 |
+
DEFAULT_OBJECT_INDEX represents an object token, and all other values represent text tokens.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
List[Dict[str, Any]]: A list of dictionaries where each dictionary contains the type of the
|
112 |
+
token slice ('text', 'image', 'object') and the span as a list of start and end indices.
|
113 |
+
"""
|
114 |
+
# define type markers and corresponding types
|
115 |
+
type_map = {IMAGE_TOKEN_INDEX: "image", DEFAULT_OBJECT_INDEX: "object"}
|
116 |
+
|
117 |
+
# find the positions of special markers
|
118 |
+
image_indices = torch.where(input_ids == IMAGE_TOKEN_INDEX)[0]
|
119 |
+
object_indices = torch.where(input_ids == DEFAULT_OBJECT_INDEX)[0]
|
120 |
+
if len(object_indices) > 0:
|
121 |
+
has_object = True
|
122 |
+
else:
|
123 |
+
has_object = False
|
124 |
+
|
125 |
+
# merge all the positions of special markers
|
126 |
+
special_indices = torch.cat((image_indices, object_indices))
|
127 |
+
special_indices, _ = torch.sort(special_indices)
|
128 |
+
special_tokens = input_ids[special_indices]
|
129 |
+
|
130 |
+
slices = []
|
131 |
+
start_idx = 0
|
132 |
+
|
133 |
+
for i, idx in enumerate(special_indices):
|
134 |
+
if start_idx < idx:
|
135 |
+
slices.append({"type": "text", "span": [start_idx, idx.item()]})
|
136 |
+
token_type = type_map[special_tokens[i].item()]
|
137 |
+
slices.append({"type": token_type, "span": [idx.item(), idx.item() + 1]})
|
138 |
+
start_idx = idx.item() + 1
|
139 |
+
|
140 |
+
if start_idx < len(input_ids):
|
141 |
+
slices.append({"type": "text", "span": [start_idx, len(input_ids)]})
|
142 |
+
|
143 |
+
return slices, has_object
|
144 |
+
|
145 |
+
|
146 |
+
class StopWordStoppingCriteria(StoppingCriteria):
|
147 |
+
"""StopWord stopping criteria."""
|
148 |
+
|
149 |
+
def __init__(self, tokenizer, stop_word):
|
150 |
+
self.tokenizer = tokenizer
|
151 |
+
self.stop_word = stop_word
|
152 |
+
self.length = len(self.stop_word)
|
153 |
+
|
154 |
+
def __call__(self, input_ids, *args, **kwargs) -> bool:
|
155 |
+
cur_text = self.tokenizer.decode(input_ids[0])
|
156 |
+
cur_text = cur_text.replace("\r", "").replace("\n", "")
|
157 |
+
return cur_text[-self.length :] == self.stop_word
|
158 |
+
|
159 |
+
|
160 |
+
def get_stop_criteria(
|
161 |
+
tokenizer,
|
162 |
+
stop_words=[],
|
163 |
+
):
|
164 |
+
stop_criteria = StoppingCriteriaList()
|
165 |
+
for word in stop_words:
|
166 |
+
stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
|
167 |
+
return stop_criteria
|
168 |
+
|
169 |
+
|
170 |
+
def gen_sineembed_for_position(pos_tensor, dim_of_pos_feats):
|
171 |
+
"""Generate sine position embedding from a position tensor.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
pos_tensor (torch.Tensor): shape: [batch_size, N, 4]. the last dimension is [cx, cy, w, h] in
|
175 |
+
normalized coordinates in range [0, 1].
|
176 |
+
out_dim (int): the output dimension of the position embedding.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
pos (torch.Tensor): shape: [batch_size, N, out_dim].
|
180 |
+
"""
|
181 |
+
scale = 2 * math.pi
|
182 |
+
dim_t = torch.arange(
|
183 |
+
dim_of_pos_feats, dtype=torch.float32, device=pos_tensor.device
|
184 |
+
)
|
185 |
+
dim_t = 10000 ** (2 * (dim_t // 2) / dim_of_pos_feats)
|
186 |
+
x_embed = pos_tensor[:, :, 0] * scale
|
187 |
+
y_embed = pos_tensor[:, :, 1] * scale
|
188 |
+
pos_x = x_embed[:, :, None] / dim_t
|
189 |
+
pos_y = y_embed[:, :, None] / dim_t
|
190 |
+
pos_x = torch.stack(
|
191 |
+
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3
|
192 |
+
).flatten(2)
|
193 |
+
pos_y = torch.stack(
|
194 |
+
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3
|
195 |
+
).flatten(2)
|
196 |
+
if pos_tensor.size(-1) == 2:
|
197 |
+
pos = torch.cat((pos_y, pos_x), dim=2)
|
198 |
+
elif pos_tensor.size(-1) == 4:
|
199 |
+
w_embed = pos_tensor[:, :, 2] * scale
|
200 |
+
pos_w = w_embed[:, :, None] / dim_t
|
201 |
+
pos_w = torch.stack(
|
202 |
+
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3
|
203 |
+
).flatten(2)
|
204 |
+
|
205 |
+
h_embed = pos_tensor[:, :, 3] * scale
|
206 |
+
pos_h = h_embed[:, :, None] / dim_t
|
207 |
+
pos_h = torch.stack(
|
208 |
+
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3
|
209 |
+
).flatten(2)
|
210 |
+
|
211 |
+
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
|
212 |
+
else:
|
213 |
+
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
|
214 |
+
return pos
|
215 |
+
|
216 |
+
|
217 |
+
class MultiLevelROIVisualPrompt(nn.Module):
|
218 |
+
"""Initialize the MultiLevelROIVisualPrompt.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
output_size (Optional[int]): The size of the output. Default is None.
|
222 |
+
channel_per_level (List[int]): List of channels per level. Default is [192, 384, 768, 1536].
|
223 |
+
spatial_scale (Optional[float]): The spatial scale factor. Default is None.
|
224 |
+
with_additional_projection (bool): Whether to use additional projection. Default is False.
|
225 |
+
visual_prompt_hidden_size (int): The hidden size of the visual prompt. Default is 1024.
|
226 |
+
add_pos_embedding (bool): Whether to add position embedding. Default is False.
|
227 |
+
pos_embedding_dim (int): The dimension of the position embedding. Default is 1024.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(
|
231 |
+
self,
|
232 |
+
output_size: int = None,
|
233 |
+
channel_per_level: List[int] = [192, 384, 768, 1536],
|
234 |
+
spatail_scale: float = None,
|
235 |
+
add_pos_embedding: bool = False,
|
236 |
+
pos_embedding_dim: int = 1024,
|
237 |
+
):
|
238 |
+
super(MultiLevelROIVisualPrompt, self).__init__()
|
239 |
+
self.output_size = output_size
|
240 |
+
self.channel_per_level = channel_per_level
|
241 |
+
self.spatail_scale = spatail_scale
|
242 |
+
self.add_pos_embedding = add_pos_embedding
|
243 |
+
self.pos_embedding_dim = pos_embedding_dim
|
244 |
+
|
245 |
+
def __call__(
|
246 |
+
self,
|
247 |
+
multi_level_features: List[torch.Tensor],
|
248 |
+
boxes: Union[torch.Tensor, List[torch.Tensor]],
|
249 |
+
) -> torch.Tensor:
|
250 |
+
"""Performs Region of Interest (RoI) Align operator on multi-level features. The RoI
|
251 |
+
feature on each scale will go through a different linear layer for projection. Different
|
252 |
+
RoI features will be summed up and then average pooled.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
multi_level_features (Listp[Tensor[N, C, H, W]]): Feature maps from different levels
|
256 |
+
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
|
257 |
+
format where the regions will be taken from.
|
258 |
+
Returns:
|
259 |
+
Tensor[1, K, C]: The output tensor that has the shape KxC, where K is the number of RoIs
|
260 |
+
"""
|
261 |
+
boxes[0] = boxes[0].float()
|
262 |
+
concat_multi_level_feature = []
|
263 |
+
max_height = max([feature.shape[2] for feature in multi_level_features])
|
264 |
+
max_width = max([feature.shape[3] for feature in multi_level_features])
|
265 |
+
# interpolate to the same size
|
266 |
+
for level, feature in enumerate(multi_level_features):
|
267 |
+
if level != 0:
|
268 |
+
concat_multi_level_feature.append(
|
269 |
+
F.interpolate(
|
270 |
+
feature.float(),
|
271 |
+
size=(max_height, max_width),
|
272 |
+
mode="bilinear",
|
273 |
+
align_corners=False,
|
274 |
+
)
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
concat_multi_level_feature.append(feature.float())
|
278 |
+
concat_multi_level_feature = torch.cat(concat_multi_level_feature, dim=1)
|
279 |
+
|
280 |
+
out_box_feat = roi_align(
|
281 |
+
concat_multi_level_feature,
|
282 |
+
boxes,
|
283 |
+
output_size=self.output_size,
|
284 |
+
spatial_scale=self.spatail_scale,
|
285 |
+
)
|
286 |
+
|
287 |
+
# Average Pooling -> n,c -> 1,n,c
|
288 |
+
out_box_feat = out_box_feat.mean(dim=(2, 3)).reshape(
|
289 |
+
1, out_box_feat.shape[0], out_box_feat.shape[1]
|
290 |
+
)
|
291 |
+
if self.add_pos_embedding:
|
292 |
+
# note that this boxes is in xyxy, unormalized format, so we need to normalize it first
|
293 |
+
boxes = boxes[0] # (N, 4)
|
294 |
+
boxes = boxes.to(out_box_feat.dtype)
|
295 |
+
original_img_width = max_width / self.spatail_scale
|
296 |
+
original_img_height = max_height / self.spatail_scale
|
297 |
+
boxes[:, [0, 2]] = boxes[:, [0, 2]] / original_img_width
|
298 |
+
boxes[:, [1, 3]] = boxes[:, [1, 3]] / original_img_height
|
299 |
+
# convert from xyxy to cx, cy, w, h
|
300 |
+
boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
|
301 |
+
boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
|
302 |
+
boxes[:, 0] = boxes[:, 0] + boxes[:, 2] / 2
|
303 |
+
boxes[:, 1] = boxes[:, 1] + boxes[:, 3] / 2
|
304 |
+
pos_embed = gen_sineembed_for_position(
|
305 |
+
boxes.unsqueeze(0), self.pos_embedding_dim // 4
|
306 |
+
)
|
307 |
+
out_box_feat = out_box_feat + pos_embed
|
308 |
+
|
309 |
+
return out_box_feat
|
310 |
+
|
311 |
+
|
312 |
+
class RexSeekQwenConfig(Qwen2Config):
|
313 |
+
model_type = "rexseek_qwen"
|
314 |
+
|
315 |
+
|
316 |
+
class RexSeekQwenForCausalLM(Qwen2ForCausalLM):
|
317 |
+
|
318 |
+
config_class = RexSeekQwenConfig
|
319 |
+
|
320 |
+
def __init__(self, config):
|
321 |
+
super().__init__(config)
|
322 |
+
# low resolusion vision encoder
|
323 |
+
vision_tower = getattr(
|
324 |
+
config,
|
325 |
+
"mm_vision_tower",
|
326 |
+
getattr(config, "vision_tower", None),
|
327 |
+
)
|
328 |
+
self.vision_tower = CLIPVisionTower(
|
329 |
+
vision_tower,
|
330 |
+
args=config,
|
331 |
+
)
|
332 |
+
# high resolusion vision encoder
|
333 |
+
self.vision_tower_aux = ConvNextVisionEncoder()
|
334 |
+
|
335 |
+
# vision projector
|
336 |
+
self.mm_projector = build_vision_projector(
|
337 |
+
config, start_hidden_size=2560
|
338 |
+
) # projector for vision_tower
|
339 |
+
# projector for object token
|
340 |
+
self.mm_object_projector = build_vision_projector(
|
341 |
+
config, start_hidden_size=2880
|
342 |
+
)
|
343 |
+
# visual prompt encoder
|
344 |
+
self.vocab_size = config.vocab_size
|
345 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
346 |
+
# Initialize weights and apply final processing
|
347 |
+
self.box_encoder = MultiLevelROIVisualPrompt(
|
348 |
+
output_size=7,
|
349 |
+
channel_per_level=[192, 384, 768, 1536], # ConvNeXt Large
|
350 |
+
spatail_scale=192 / 768,
|
351 |
+
add_pos_embedding=True,
|
352 |
+
pos_embedding_dim=2880,
|
353 |
+
)
|
354 |
+
self.post_init()
|
355 |
+
print("model initialized")
|
356 |
+
|
357 |
+
def get_vision_tower(self):
|
358 |
+
vision_tower = getattr(self, "vision_tower", None)
|
359 |
+
if type(vision_tower) is list:
|
360 |
+
vision_tower = vision_tower[0]
|
361 |
+
return vision_tower
|
362 |
+
|
363 |
+
def get_vision_tower_aux(self):
|
364 |
+
vision_tower_aux = getattr(self, "vision_tower_aux", None)
|
365 |
+
if type(vision_tower_aux) is list:
|
366 |
+
vision_tower_aux = vision_tower_aux[0]
|
367 |
+
return vision_tower_aux
|
368 |
+
|
369 |
+
def get_model(self):
|
370 |
+
return self.model
|
371 |
+
|
372 |
+
def encode_images(self, images, images_aux):
|
373 |
+
low_res_feat = self.get_vision_tower()(images)
|
374 |
+
aux_output = self.get_vision_tower_aux()(images_aux)
|
375 |
+
visual_outputs_aux = aux_output["image_features"]
|
376 |
+
high_res_feat = aux_output["last_feat"] # (B, 1536, 24, 24)
|
377 |
+
# concat the low res features with the high res features
|
378 |
+
b, c, h, w = high_res_feat.shape # (2, 1536, 24, 24)
|
379 |
+
_, _, d = low_res_feat.shape # (2, 576, 1024)
|
380 |
+
high_res_feat = high_res_feat.view(b, c, h * w).transpose(1, 2)
|
381 |
+
image_features = torch.cat((low_res_feat, high_res_feat), dim=-1)
|
382 |
+
image_features = self.mm_projector(image_features)
|
383 |
+
return image_features, visual_outputs_aux
|
384 |
+
|
385 |
+
def encode_objects(
|
386 |
+
self, bboxes, visual_outputs_aux, dtype, num_gt_boxes_per_image=None
|
387 |
+
):
|
388 |
+
"""Encode object features from bounding boxes.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
bboxes (torch.Tensor): bounding boxes in the shape of (N, 4)
|
392 |
+
image_features_before_proj (torch.Tensor): image features in the shape of (N, hidden_size)
|
393 |
+
|
394 |
+
Returns:
|
395 |
+
torch.Tensor: object features in the shape of (N, hidden_size)
|
396 |
+
"""
|
397 |
+
bbox_visual_outputs = []
|
398 |
+
for batch_idx, boxes in enumerate(bboxes):
|
399 |
+
num_box = (
|
400 |
+
num_gt_boxes_per_image[batch_idx]
|
401 |
+
if num_gt_boxes_per_image is not None
|
402 |
+
else len(boxes)
|
403 |
+
)
|
404 |
+
boxes = boxes[:num_box]
|
405 |
+
if len(boxes) == 0:
|
406 |
+
bbox_visual_outputs.append(None)
|
407 |
+
continue
|
408 |
+
multi_level_aux_features = [
|
409 |
+
visual_output_aux[batch_idx].unsqueeze(0)
|
410 |
+
for visual_output_aux in visual_outputs_aux
|
411 |
+
]
|
412 |
+
out_vp_feat = self.box_encoder(
|
413 |
+
multi_level_aux_features,
|
414 |
+
[boxes],
|
415 |
+
).squeeze(0)
|
416 |
+
out_vp_feat = out_vp_feat.to(dtype)
|
417 |
+
out_vp_feat = self.mm_object_projector(out_vp_feat)
|
418 |
+
bbox_visual_outputs.append(out_vp_feat)
|
419 |
+
# b,n,c
|
420 |
+
return bbox_visual_outputs
|
421 |
+
|
422 |
+
def prepare_inputs_labels_for_multimodal(
|
423 |
+
self,
|
424 |
+
input_ids,
|
425 |
+
position_ids,
|
426 |
+
attention_mask,
|
427 |
+
past_key_values,
|
428 |
+
labels,
|
429 |
+
pixel_values=None,
|
430 |
+
pixel_values_aux=None,
|
431 |
+
gt_boxes=None,
|
432 |
+
num_gt_boxes_per_image=None,
|
433 |
+
):
|
434 |
+
if pixel_values is None:
|
435 |
+
return (
|
436 |
+
input_ids,
|
437 |
+
position_ids,
|
438 |
+
attention_mask,
|
439 |
+
past_key_values,
|
440 |
+
None,
|
441 |
+
labels,
|
442 |
+
)
|
443 |
+
pixel_values, visual_outputs_aux = self.encode_images(
|
444 |
+
pixel_values, pixel_values_aux
|
445 |
+
) # (B, 576, 2048)
|
446 |
+
if gt_boxes is not None:
|
447 |
+
bbox_feats = self.encode_objects(
|
448 |
+
gt_boxes, visual_outputs_aux, pixel_values.dtype, num_gt_boxes_per_image
|
449 |
+
)
|
450 |
+
_labels = labels
|
451 |
+
_position_ids = position_ids
|
452 |
+
_attention_mask = attention_mask
|
453 |
+
if attention_mask is None:
|
454 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
455 |
+
else:
|
456 |
+
attention_mask = attention_mask.bool() # padding mask in shaoe (B, L)
|
457 |
+
if position_ids is None:
|
458 |
+
position_ids = torch.arange(
|
459 |
+
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
|
460 |
+
)
|
461 |
+
if labels is None:
|
462 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
463 |
+
|
464 |
+
input_ids = [
|
465 |
+
cur_input_ids[cur_attention_mask]
|
466 |
+
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
|
467 |
+
]
|
468 |
+
labels = [
|
469 |
+
cur_labels[cur_attention_mask]
|
470 |
+
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
|
471 |
+
]
|
472 |
+
|
473 |
+
new_input_embeds = []
|
474 |
+
new_labels = []
|
475 |
+
cur_image_idx = 0
|
476 |
+
cur_object_idx = 0
|
477 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
478 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
479 |
+
if num_images == 0:
|
480 |
+
cur_image_features = pixel_values[cur_image_idx]
|
481 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
482 |
+
cur_input_embeds = torch.cat(
|
483 |
+
[cur_input_embeds_1, cur_image_features[0:0]], dim=0
|
484 |
+
)
|
485 |
+
new_input_embeds.append(cur_input_embeds)
|
486 |
+
new_labels.append(labels[batch_idx])
|
487 |
+
cur_image_idx += 1
|
488 |
+
cur_object_idx += 1
|
489 |
+
continue
|
490 |
+
|
491 |
+
cur_labels = labels[batch_idx]
|
492 |
+
token_slices, has_object = get_token_slices(cur_input_ids)
|
493 |
+
result_input_embeddings = []
|
494 |
+
result_output_labels = []
|
495 |
+
cur_gt_bnox_indice = 0
|
496 |
+
cur_object_features = None
|
497 |
+
for slice in token_slices:
|
498 |
+
slice_type = slice["type"]
|
499 |
+
slice_span = slice["span"]
|
500 |
+
if slice_type == "text":
|
501 |
+
cur_input_ids_noim = cur_input_ids[slice_span[0] : slice_span[1]]
|
502 |
+
cur_labels_noim = cur_labels[slice_span[0] : slice_span[1]]
|
503 |
+
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids_noim)
|
504 |
+
result_input_embeddings.append(cur_input_embeds)
|
505 |
+
result_output_labels.append(cur_labels_noim)
|
506 |
+
elif slice_type == "image":
|
507 |
+
cur_input_embeds = pixel_values[cur_image_idx]
|
508 |
+
result_input_embeddings.append(cur_input_embeds)
|
509 |
+
result_output_labels.append(
|
510 |
+
torch.full(
|
511 |
+
(cur_input_embeds.shape[0],),
|
512 |
+
IGNORE_INDEX,
|
513 |
+
device=cur_labels.device,
|
514 |
+
dtype=cur_labels.dtype,
|
515 |
+
)
|
516 |
+
)
|
517 |
+
cur_image_idx += 1
|
518 |
+
elif slice_type == "object":
|
519 |
+
try:
|
520 |
+
result_input_embeddings.append(
|
521 |
+
bbox_feats[cur_object_idx][cur_gt_bnox_indice].unsqueeze(0)
|
522 |
+
)
|
523 |
+
except:
|
524 |
+
raise ValueError(
|
525 |
+
f"current boxe_feats.shape: {bbox_feats[cur_object_idx].shape}, "
|
526 |
+
)
|
527 |
+
cur_gt_bnox_indice += 1
|
528 |
+
result_output_labels.append(
|
529 |
+
torch.full(
|
530 |
+
(1,),
|
531 |
+
IGNORE_INDEX,
|
532 |
+
device=cur_labels.device,
|
533 |
+
dtype=cur_labels.dtype,
|
534 |
+
)
|
535 |
+
)
|
536 |
+
cur_object_idx += 1
|
537 |
+
result_input_embeddings = torch.cat(result_input_embeddings)
|
538 |
+
result_output_labels = torch.cat(result_output_labels)
|
539 |
+
assert len(result_output_labels) == len(result_input_embeddings)
|
540 |
+
new_input_embeds.append(result_input_embeddings)
|
541 |
+
new_labels.append(result_output_labels)
|
542 |
+
|
543 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
544 |
+
tokenizer_model_max_length = getattr(
|
545 |
+
self.config, "tokenizer_model_max_length", None
|
546 |
+
)
|
547 |
+
if tokenizer_model_max_length is not None:
|
548 |
+
new_input_embeds = [
|
549 |
+
x[:tokenizer_model_max_length] for x in new_input_embeds
|
550 |
+
]
|
551 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
552 |
+
|
553 |
+
# Combine them
|
554 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
555 |
+
batch_size = len(new_input_embeds)
|
556 |
+
|
557 |
+
new_input_embeds_padded = []
|
558 |
+
new_labels_padded = torch.full(
|
559 |
+
(batch_size, max_len),
|
560 |
+
IGNORE_INDEX,
|
561 |
+
dtype=new_labels[0].dtype,
|
562 |
+
device=new_labels[0].device,
|
563 |
+
)
|
564 |
+
attention_mask = torch.zeros(
|
565 |
+
(batch_size, max_len),
|
566 |
+
dtype=attention_mask.dtype,
|
567 |
+
device=attention_mask.device,
|
568 |
+
)
|
569 |
+
position_ids = torch.zeros(
|
570 |
+
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
|
571 |
+
)
|
572 |
+
|
573 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(
|
574 |
+
zip(new_input_embeds, new_labels)
|
575 |
+
):
|
576 |
+
cur_len = cur_new_embed.shape[0]
|
577 |
+
new_input_embeds_padded.append(
|
578 |
+
torch.cat(
|
579 |
+
(
|
580 |
+
cur_new_embed,
|
581 |
+
torch.zeros(
|
582 |
+
(max_len - cur_len, cur_new_embed.shape[1]),
|
583 |
+
dtype=cur_new_embed.dtype,
|
584 |
+
device=cur_new_embed.device,
|
585 |
+
),
|
586 |
+
),
|
587 |
+
dim=0,
|
588 |
+
)
|
589 |
+
)
|
590 |
+
if cur_len > 0:
|
591 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
592 |
+
attention_mask[i, :cur_len] = True
|
593 |
+
position_ids[i, :cur_len] = torch.arange(
|
594 |
+
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
|
595 |
+
)
|
596 |
+
|
597 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
598 |
+
|
599 |
+
if _labels is None:
|
600 |
+
new_labels = None
|
601 |
+
else:
|
602 |
+
new_labels = new_labels_padded
|
603 |
+
|
604 |
+
if _attention_mask is None:
|
605 |
+
attention_mask = None
|
606 |
+
else:
|
607 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
608 |
+
|
609 |
+
if _position_ids is None:
|
610 |
+
position_ids = None
|
611 |
+
|
612 |
+
return (
|
613 |
+
None,
|
614 |
+
position_ids,
|
615 |
+
attention_mask,
|
616 |
+
past_key_values,
|
617 |
+
new_input_embeds,
|
618 |
+
new_labels,
|
619 |
+
)
|
620 |
+
|
621 |
+
@torch.no_grad()
|
622 |
+
def generate(
|
623 |
+
self,
|
624 |
+
inputs: Optional[torch.Tensor],
|
625 |
+
pixel_values: Optional[torch.Tensor],
|
626 |
+
pixel_values_aux: Optional[torch.Tensor],
|
627 |
+
position_ids: Optional[torch.Tensor] = None,
|
628 |
+
attention_mask: Optional[torch.Tensor] = None,
|
629 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
630 |
+
**kwargs,
|
631 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
632 |
+
|
633 |
+
if inputs_embeds is None:
|
634 |
+
position_ids = kwargs.pop("position_ids", None)
|
635 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
636 |
+
gt_boxes = kwargs.pop("gt_boxes", None)
|
637 |
+
num_gt_boxes_per_image = kwargs.pop("num_gt_boxes_per_image", None)
|
638 |
+
|
639 |
+
if pixel_values is not None:
|
640 |
+
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = (
|
641 |
+
self.prepare_inputs_labels_for_multimodal(
|
642 |
+
inputs,
|
643 |
+
position_ids,
|
644 |
+
attention_mask,
|
645 |
+
past_key_values=None,
|
646 |
+
labels=None,
|
647 |
+
pixel_values=pixel_values,
|
648 |
+
pixel_values_aux=pixel_values_aux,
|
649 |
+
gt_boxes=gt_boxes,
|
650 |
+
num_gt_boxes_per_image=num_gt_boxes_per_image,
|
651 |
+
)
|
652 |
+
)
|
653 |
+
|
654 |
+
else:
|
655 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
656 |
+
|
657 |
+
return super().generate(
|
658 |
+
position_ids=position_ids,
|
659 |
+
attention_mask=attention_mask,
|
660 |
+
inputs_embeds=inputs_embeds,
|
661 |
+
**kwargs,
|
662 |
+
)
|
663 |
+
|
664 |
+
|
665 |
+
AutoConfig.register("rexseek_qwen", RexSeekQwenConfig)
|
666 |
+
AutoModelForCausalLM.register(RexSeekQwenConfig, RexSeekQwenForCausalLM)
|
preprocessing_rexseek.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
|
4 |
+
import re
|
5 |
+
from typing import List, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchvision.transforms.functional as F
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
|
12 |
+
from transformers.processing_utils import ProcessorMixin
|
13 |
+
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
IGNORE_INDEX = -100
|
20 |
+
DEFAULT_PAD_TOKEN_INDEX = 0
|
21 |
+
IMAGE_TOKEN_INDEX = -200
|
22 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
23 |
+
|
24 |
+
# For Objects
|
25 |
+
DEFAULT_OBJECT_TOKEN = "<obj<i>>"
|
26 |
+
DEFAULT_OBJECT_FEATURE_TOKEN = "<objfeat>"
|
27 |
+
DEFAULT_OBJECT_INDEX = -300
|
28 |
+
|
29 |
+
# For Grounding
|
30 |
+
DEFAULT_GROUNDING_START = "<ground>"
|
31 |
+
DEFAULT_GROUNDING_END = "</ground>"
|
32 |
+
DEFAULT_GROUNDING_OBJECTS_START = "<objects>"
|
33 |
+
DEFAULT_GROUNDING_OBJECTS_END = "</objects>"
|
34 |
+
|
35 |
+
|
36 |
+
def xyxy_to_xywh(boxes):
|
37 |
+
"""
|
38 |
+
Convert boxes from xywh to xyxy format.
|
39 |
+
|
40 |
+
Parameters:
|
41 |
+
boxes (numpy.ndarray): An array of shape (N, 4) where N is the number of boxes.
|
42 |
+
Each box is represented as [x, y, x, y].
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
numpy.ndarray: An array of shape (N, 4) where each box is represented as [x_min, y_min, w, h].
|
46 |
+
"""
|
47 |
+
boxes = np.array(boxes)
|
48 |
+
x_min, y_min, x_max, y_max = (
|
49 |
+
boxes[:, 0],
|
50 |
+
boxes[:, 1],
|
51 |
+
boxes[:, 2],
|
52 |
+
boxes[:, 3],
|
53 |
+
)
|
54 |
+
w = x_max - x_min
|
55 |
+
h = y_max - y_min
|
56 |
+
return np.stack([x_min, y_min, w, h], axis=1)
|
57 |
+
|
58 |
+
|
59 |
+
def xywh_to_xyxy(boxes):
|
60 |
+
"""
|
61 |
+
Convert boxes from xywh to xyxy format.
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
boxes (numpy.ndarray): An array of shape (N, 4) where N is the number of boxes.
|
65 |
+
Each box is represented as [x, y, width, height].
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
numpy.ndarray: An array of shape (N, 4) where each box is represented as [x_min, y_min, x_max, y_max].
|
69 |
+
"""
|
70 |
+
boxes = np.array(boxes)
|
71 |
+
x, y, width, height = (
|
72 |
+
boxes[:, 0],
|
73 |
+
boxes[:, 1],
|
74 |
+
boxes[:, 2],
|
75 |
+
boxes[:, 3],
|
76 |
+
)
|
77 |
+
x_max = x + width
|
78 |
+
y_max = y + height
|
79 |
+
return np.stack([x, y, x_max, y_max], axis=1)
|
80 |
+
|
81 |
+
|
82 |
+
def expand2square(pil_img, background_color):
|
83 |
+
width, height = pil_img.size
|
84 |
+
if width == height:
|
85 |
+
return pil_img
|
86 |
+
elif width > height:
|
87 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
88 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
89 |
+
return result
|
90 |
+
else:
|
91 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
92 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
93 |
+
return result
|
94 |
+
|
95 |
+
|
96 |
+
def pad_boxes(gt_boxes, old_size):
|
97 |
+
old_w, old_h = old_size
|
98 |
+
gt_boxes = np.array(gt_boxes).astype(np.float32)
|
99 |
+
# Calculate the padding added
|
100 |
+
if old_w > old_h:
|
101 |
+
pad_top = (old_w - old_h) // 2
|
102 |
+
pad_bottom = old_w - old_h - pad_top
|
103 |
+
pad_left, pad_right = 0, 0
|
104 |
+
else:
|
105 |
+
pad_left = (old_h - old_w) // 2
|
106 |
+
pad_right = old_h - old_w - pad_left
|
107 |
+
pad_top, pad_bottom = 0, 0
|
108 |
+
|
109 |
+
# Adjust the boxes for padding
|
110 |
+
gt_boxes[:, 0] += pad_left # x
|
111 |
+
gt_boxes[:, 1] += pad_top # y
|
112 |
+
return gt_boxes
|
113 |
+
|
114 |
+
|
115 |
+
def resize_boxes(gt_boxes, old_size, new_size):
|
116 |
+
old_w, old_h = old_size
|
117 |
+
new_h, new_w = new_size
|
118 |
+
gt_boxes = np.array(gt_boxes).astype(np.float32)
|
119 |
+
# Calculate scale factors
|
120 |
+
scale_x = new_w / max(old_w, old_h)
|
121 |
+
scale_y = new_h / max(old_w, old_h)
|
122 |
+
|
123 |
+
# Resize the boxes
|
124 |
+
gt_boxes[:, 0] *= scale_x # x
|
125 |
+
gt_boxes[:, 1] *= scale_y # y
|
126 |
+
gt_boxes[:, 2] *= scale_x # w
|
127 |
+
gt_boxes[:, 3] *= scale_y # h
|
128 |
+
|
129 |
+
return gt_boxes
|
130 |
+
|
131 |
+
|
132 |
+
def split_special_strings(input_string: str, special_strings: list[str] = None):
|
133 |
+
"""Split the input string into a list of strings, keeping the special strings.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
input_string (str): The input string to split.
|
137 |
+
|
138 |
+
Example:
|
139 |
+
|
140 |
+
input_string = "<image>\n<obj0><objfeat><obj1><objfeat>\n I am happy today."
|
141 |
+
output = ['<image>', '\n<obj0>', '<objfeat>', '<obj1>', '<objfeat>', '\n I am happy today.']
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
list: A list of strings, with the special strings separated from the rest of the input string.
|
145 |
+
"""
|
146 |
+
# Create a regex pattern to match the special strings
|
147 |
+
pattern = "|".join(map(re.escape, special_strings))
|
148 |
+
|
149 |
+
# Split the input string using the pattern, keeping the special strings in the result
|
150 |
+
split_list = re.split(f"({pattern})", input_string)
|
151 |
+
|
152 |
+
# Remove empty strings from the list
|
153 |
+
split_list = [s for s in split_list if s]
|
154 |
+
|
155 |
+
return split_list
|
156 |
+
|
157 |
+
|
158 |
+
def tokenizer_image_object_token(prompt, tokenizer):
|
159 |
+
bos_token_id = tokenizer.bos_token_id
|
160 |
+
split_tokens = [DEFAULT_IMAGE_TOKEN, DEFAULT_OBJECT_FEATURE_TOKEN]
|
161 |
+
chunks = split_special_strings(prompt, split_tokens)
|
162 |
+
input_encode = [bos_token_id] if bos_token_id else []
|
163 |
+
for chunk in chunks:
|
164 |
+
if chunk == DEFAULT_IMAGE_TOKEN:
|
165 |
+
input_encode.append(IMAGE_TOKEN_INDEX)
|
166 |
+
elif chunk == DEFAULT_OBJECT_FEATURE_TOKEN:
|
167 |
+
input_encode.append(DEFAULT_OBJECT_INDEX)
|
168 |
+
else:
|
169 |
+
input_encode.extend(tokenizer.encode(chunk, add_special_tokens=False))
|
170 |
+
return input_encode
|
171 |
+
|
172 |
+
|
173 |
+
class RexSeekProcessor(ProcessorMixin):
|
174 |
+
attributes = ["image_processor", "tokenizer"]
|
175 |
+
image_processor_class = "AutoImageProcessor"
|
176 |
+
tokenizer_class = "AutoTokenizer"
|
177 |
+
|
178 |
+
def __init__(self, image_processor=None, tokenizer: AutoTokenizer = None, **kwargs):
|
179 |
+
# self.image_processor = image_processor
|
180 |
+
# self.tokenizer = tokenizer
|
181 |
+
super().__init__(image_processor, tokenizer)
|
182 |
+
self._special_tokens = None
|
183 |
+
self.template = dict(
|
184 |
+
SYSTEM=("<|im_start|>system\n{system}<|im_end|>\n"),
|
185 |
+
INSTRUCTION=(
|
186 |
+
"<|im_start|>user\n{input}<|im_end|>\n" "<|im_start|>assistant\n"
|
187 |
+
),
|
188 |
+
SUFFIX="<|im_end|>",
|
189 |
+
SUFFIX_AS_EOS=True,
|
190 |
+
SEP="\n",
|
191 |
+
STOP_WORDS=["<|im_end|>", "<|endoftext|>"],
|
192 |
+
)
|
193 |
+
|
194 |
+
def process(
|
195 |
+
self,
|
196 |
+
image: Union[str, Image.Image],
|
197 |
+
bbox: List[List[int]],
|
198 |
+
question: str,
|
199 |
+
):
|
200 |
+
"""Prepare input data for inference.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
image (Union[str, Image.Image]): The image to process.
|
204 |
+
bbox (List[List[int]]): A list of bounding boxes for the image. Each bounding box should
|
205 |
+
be in order of [x, y, x , y].
|
206 |
+
question (str): The question to ask about the image.
|
207 |
+
"""
|
208 |
+
data_dict = {}
|
209 |
+
# step1 load image
|
210 |
+
if type(image) == str:
|
211 |
+
image = Image.open(image).convert("RGB")
|
212 |
+
ori_w, ori_h = F.get_image_size(image)
|
213 |
+
image = expand2square(
|
214 |
+
image,
|
215 |
+
tuple(int(x * 255) for x in self.image_processor.image_mean),
|
216 |
+
)
|
217 |
+
pad_w, pad_h = F.get_image_size(image)
|
218 |
+
image_aux = self.image_processor.preprocess(image, return_tensors="pt")[
|
219 |
+
"pixel_values"
|
220 |
+
][0]
|
221 |
+
resize_h, resize_w = image_aux.shape[-2:]
|
222 |
+
data_dict["pixel_values_aux"] = image_aux.unsqueeze(0)
|
223 |
+
image = image_aux.clone()
|
224 |
+
image = torch.nn.functional.interpolate(
|
225 |
+
image[None],
|
226 |
+
size=[336, 336],
|
227 |
+
mode="bilinear",
|
228 |
+
align_corners=False,
|
229 |
+
)[0]
|
230 |
+
data_dict["pixel_values"] = image.unsqueeze(0)
|
231 |
+
|
232 |
+
# step2 load boxes
|
233 |
+
bbox = xyxy_to_xywh(bbox)
|
234 |
+
bbox = pad_boxes(bbox, (ori_w, ori_h))
|
235 |
+
bbox = resize_boxes(bbox, (pad_w, pad_h), (resize_h, resize_w))
|
236 |
+
data_dict["gt_boxes"] = torch.tensor(xywh_to_xyxy(bbox)).unsqueeze(0)
|
237 |
+
|
238 |
+
# step3 prepare question
|
239 |
+
total_num_boxes = len(bbox)
|
240 |
+
obj_tokens = [
|
241 |
+
DEFAULT_OBJECT_TOKEN.replace("<i>", str(i)) for i in range(total_num_boxes)
|
242 |
+
]
|
243 |
+
obj_tokens = (
|
244 |
+
DEFAULT_OBJECT_FEATURE_TOKEN.join(obj_tokens) + DEFAULT_OBJECT_FEATURE_TOKEN
|
245 |
+
)
|
246 |
+
question = question.replace(DEFAULT_IMAGE_TOKEN, "")
|
247 |
+
question = DEFAULT_IMAGE_TOKEN + "\n" + obj_tokens + "\n" + question
|
248 |
+
|
249 |
+
inputs = ""
|
250 |
+
inputs += self.template["INSTRUCTION"].format(input=question, round=1)
|
251 |
+
|
252 |
+
# step4 tokenize question
|
253 |
+
input_ids = tokenizer_image_object_token(inputs, self.tokenizer)
|
254 |
+
data_dict["input_ids"] = torch.tensor(input_ids).unsqueeze(0)
|
255 |
+
|
256 |
+
return data_dict
|
257 |
+
|
258 |
+
|
259 |
+
RexSeekProcessor.register_for_auto_class()
|
preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 768,
|
4 |
+
"width": 768
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"processor_class": "ChatRexProcessor",
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 768
|
27 |
+
}
|
28 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "preprocessing_rexseek.RexSeekProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "RexSeekProcessor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>",
|
16 |
+
"<obj0>",
|
17 |
+
"<obj1>",
|
18 |
+
"<obj2>",
|
19 |
+
"<obj3>",
|
20 |
+
"<obj4>",
|
21 |
+
"<obj5>",
|
22 |
+
"<obj6>",
|
23 |
+
"<obj7>",
|
24 |
+
"<obj8>",
|
25 |
+
"<obj9>",
|
26 |
+
"<obj10>",
|
27 |
+
"<obj11>",
|
28 |
+
"<obj12>",
|
29 |
+
"<obj13>",
|
30 |
+
"<obj14>",
|
31 |
+
"<obj15>",
|
32 |
+
"<obj16>",
|
33 |
+
"<obj17>",
|
34 |
+
"<obj18>",
|
35 |
+
"<obj19>",
|
36 |
+
"<obj20>",
|
37 |
+
"<obj21>",
|
38 |
+
"<obj22>",
|
39 |
+
"<obj23>",
|
40 |
+
"<obj24>",
|
41 |
+
"<obj25>",
|
42 |
+
"<obj26>",
|
43 |
+
"<obj27>",
|
44 |
+
"<obj28>",
|
45 |
+
"<obj29>",
|
46 |
+
"<obj30>",
|
47 |
+
"<obj31>",
|
48 |
+
"<obj32>",
|
49 |
+
"<obj33>",
|
50 |
+
"<obj34>",
|
51 |
+
"<obj35>",
|
52 |
+
"<obj36>",
|
53 |
+
"<obj37>",
|
54 |
+
"<obj38>",
|
55 |
+
"<obj39>",
|
56 |
+
"<obj40>",
|
57 |
+
"<obj41>",
|
58 |
+
"<obj42>",
|
59 |
+
"<obj43>",
|
60 |
+
"<obj44>",
|
61 |
+
"<obj45>",
|
62 |
+
"<obj46>",
|
63 |
+
"<obj47>",
|
64 |
+
"<obj48>",
|
65 |
+
"<obj49>",
|
66 |
+
"<obj50>",
|
67 |
+
"<obj51>",
|
68 |
+
"<obj52>",
|
69 |
+
"<obj53>",
|
70 |
+
"<obj54>",
|
71 |
+
"<obj55>",
|
72 |
+
"<obj56>",
|
73 |
+
"<obj57>",
|
74 |
+
"<obj58>",
|
75 |
+
"<obj59>",
|
76 |
+
"<obj60>",
|
77 |
+
"<obj61>",
|
78 |
+
"<obj62>",
|
79 |
+
"<obj63>",
|
80 |
+
"<obj64>",
|
81 |
+
"<obj65>",
|
82 |
+
"<obj66>",
|
83 |
+
"<obj67>",
|
84 |
+
"<obj68>",
|
85 |
+
"<obj69>",
|
86 |
+
"<obj70>",
|
87 |
+
"<obj71>",
|
88 |
+
"<obj72>",
|
89 |
+
"<obj73>",
|
90 |
+
"<obj74>",
|
91 |
+
"<obj75>",
|
92 |
+
"<obj76>",
|
93 |
+
"<obj77>",
|
94 |
+
"<obj78>",
|
95 |
+
"<obj79>",
|
96 |
+
"<obj80>",
|
97 |
+
"<obj81>",
|
98 |
+
"<obj82>",
|
99 |
+
"<obj83>",
|
100 |
+
"<obj84>",
|
101 |
+
"<obj85>",
|
102 |
+
"<obj86>",
|
103 |
+
"<obj87>",
|
104 |
+
"<obj88>",
|
105 |
+
"<obj89>",
|
106 |
+
"<obj90>",
|
107 |
+
"<obj91>",
|
108 |
+
"<obj92>",
|
109 |
+
"<obj93>",
|
110 |
+
"<obj94>",
|
111 |
+
"<obj95>",
|
112 |
+
"<obj96>",
|
113 |
+
"<obj97>",
|
114 |
+
"<obj98>",
|
115 |
+
"<obj99>",
|
116 |
+
"<ground>",
|
117 |
+
"</ground>",
|
118 |
+
"<objects>",
|
119 |
+
"</objects>"
|
120 |
+
],
|
121 |
+
"eos_token": {
|
122 |
+
"content": "<|im_end|>",
|
123 |
+
"lstrip": false,
|
124 |
+
"normalized": false,
|
125 |
+
"rstrip": false,
|
126 |
+
"single_word": false
|
127 |
+
}
|
128 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<obj0>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "<obj1>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<obj2>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": true
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "<obj3>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": true
|
212 |
+
},
|
213 |
+
"151669": {
|
214 |
+
"content": "<obj4>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": true
|
220 |
+
},
|
221 |
+
"151670": {
|
222 |
+
"content": "<obj5>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": true
|
228 |
+
},
|
229 |
+
"151671": {
|
230 |
+
"content": "<obj6>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": true
|
236 |
+
},
|
237 |
+
"151672": {
|
238 |
+
"content": "<obj7>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": true
|
244 |
+
},
|
245 |
+
"151673": {
|
246 |
+
"content": "<obj8>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": true
|
252 |
+
},
|
253 |
+
"151674": {
|
254 |
+
"content": "<obj9>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": true
|
260 |
+
},
|
261 |
+
"151675": {
|
262 |
+
"content": "<obj10>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": true
|
268 |
+
},
|
269 |
+
"151676": {
|
270 |
+
"content": "<obj11>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": true
|
276 |
+
},
|
277 |
+
"151677": {
|
278 |
+
"content": "<obj12>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": true
|
284 |
+
},
|
285 |
+
"151678": {
|
286 |
+
"content": "<obj13>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": true
|
292 |
+
},
|
293 |
+
"151679": {
|
294 |
+
"content": "<obj14>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": true
|
300 |
+
},
|
301 |
+
"151680": {
|
302 |
+
"content": "<obj15>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": true
|
308 |
+
},
|
309 |
+
"151681": {
|
310 |
+
"content": "<obj16>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": true
|
316 |
+
},
|
317 |
+
"151682": {
|
318 |
+
"content": "<obj17>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": true
|
324 |
+
},
|
325 |
+
"151683": {
|
326 |
+
"content": "<obj18>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": true
|
332 |
+
},
|
333 |
+
"151684": {
|
334 |
+
"content": "<obj19>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": true
|
340 |
+
},
|
341 |
+
"151685": {
|
342 |
+
"content": "<obj20>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": true
|
348 |
+
},
|
349 |
+
"151686": {
|
350 |
+
"content": "<obj21>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": true
|
356 |
+
},
|
357 |
+
"151687": {
|
358 |
+
"content": "<obj22>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": true
|
364 |
+
},
|
365 |
+
"151688": {
|
366 |
+
"content": "<obj23>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": true
|
372 |
+
},
|
373 |
+
"151689": {
|
374 |
+
"content": "<obj24>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": true
|
380 |
+
},
|
381 |
+
"151690": {
|
382 |
+
"content": "<obj25>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": true
|
388 |
+
},
|
389 |
+
"151691": {
|
390 |
+
"content": "<obj26>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": true
|
396 |
+
},
|
397 |
+
"151692": {
|
398 |
+
"content": "<obj27>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": true
|
404 |
+
},
|
405 |
+
"151693": {
|
406 |
+
"content": "<obj28>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": true
|
412 |
+
},
|
413 |
+
"151694": {
|
414 |
+
"content": "<obj29>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": true
|
420 |
+
},
|
421 |
+
"151695": {
|
422 |
+
"content": "<obj30>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": true
|
428 |
+
},
|
429 |
+
"151696": {
|
430 |
+
"content": "<obj31>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": true
|
436 |
+
},
|
437 |
+
"151697": {
|
438 |
+
"content": "<obj32>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": true
|
444 |
+
},
|
445 |
+
"151698": {
|
446 |
+
"content": "<obj33>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": true
|
452 |
+
},
|
453 |
+
"151699": {
|
454 |
+
"content": "<obj34>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": true
|
460 |
+
},
|
461 |
+
"151700": {
|
462 |
+
"content": "<obj35>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": true
|
468 |
+
},
|
469 |
+
"151701": {
|
470 |
+
"content": "<obj36>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": true
|
476 |
+
},
|
477 |
+
"151702": {
|
478 |
+
"content": "<obj37>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": true
|
484 |
+
},
|
485 |
+
"151703": {
|
486 |
+
"content": "<obj38>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": true
|
492 |
+
},
|
493 |
+
"151704": {
|
494 |
+
"content": "<obj39>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": true
|
500 |
+
},
|
501 |
+
"151705": {
|
502 |
+
"content": "<obj40>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": true
|
508 |
+
},
|
509 |
+
"151706": {
|
510 |
+
"content": "<obj41>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": true
|
516 |
+
},
|
517 |
+
"151707": {
|
518 |
+
"content": "<obj42>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": true
|
524 |
+
},
|
525 |
+
"151708": {
|
526 |
+
"content": "<obj43>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": true
|
532 |
+
},
|
533 |
+
"151709": {
|
534 |
+
"content": "<obj44>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": true
|
540 |
+
},
|
541 |
+
"151710": {
|
542 |
+
"content": "<obj45>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": true
|
548 |
+
},
|
549 |
+
"151711": {
|
550 |
+
"content": "<obj46>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": true
|
556 |
+
},
|
557 |
+
"151712": {
|
558 |
+
"content": "<obj47>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": true
|
564 |
+
},
|
565 |
+
"151713": {
|
566 |
+
"content": "<obj48>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": true
|
572 |
+
},
|
573 |
+
"151714": {
|
574 |
+
"content": "<obj49>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": true
|
580 |
+
},
|
581 |
+
"151715": {
|
582 |
+
"content": "<obj50>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": true
|
588 |
+
},
|
589 |
+
"151716": {
|
590 |
+
"content": "<obj51>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": true
|
596 |
+
},
|
597 |
+
"151717": {
|
598 |
+
"content": "<obj52>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": true
|
604 |
+
},
|
605 |
+
"151718": {
|
606 |
+
"content": "<obj53>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": true
|
612 |
+
},
|
613 |
+
"151719": {
|
614 |
+
"content": "<obj54>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": true
|
620 |
+
},
|
621 |
+
"151720": {
|
622 |
+
"content": "<obj55>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": true
|
628 |
+
},
|
629 |
+
"151721": {
|
630 |
+
"content": "<obj56>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": true
|
636 |
+
},
|
637 |
+
"151722": {
|
638 |
+
"content": "<obj57>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": true
|
644 |
+
},
|
645 |
+
"151723": {
|
646 |
+
"content": "<obj58>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": true
|
652 |
+
},
|
653 |
+
"151724": {
|
654 |
+
"content": "<obj59>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": true
|
660 |
+
},
|
661 |
+
"151725": {
|
662 |
+
"content": "<obj60>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": true
|
668 |
+
},
|
669 |
+
"151726": {
|
670 |
+
"content": "<obj61>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": true
|
676 |
+
},
|
677 |
+
"151727": {
|
678 |
+
"content": "<obj62>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": true
|
684 |
+
},
|
685 |
+
"151728": {
|
686 |
+
"content": "<obj63>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": true
|
692 |
+
},
|
693 |
+
"151729": {
|
694 |
+
"content": "<obj64>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": true
|
700 |
+
},
|
701 |
+
"151730": {
|
702 |
+
"content": "<obj65>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": true
|
708 |
+
},
|
709 |
+
"151731": {
|
710 |
+
"content": "<obj66>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": true
|
716 |
+
},
|
717 |
+
"151732": {
|
718 |
+
"content": "<obj67>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": true
|
724 |
+
},
|
725 |
+
"151733": {
|
726 |
+
"content": "<obj68>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": true
|
732 |
+
},
|
733 |
+
"151734": {
|
734 |
+
"content": "<obj69>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": true
|
740 |
+
},
|
741 |
+
"151735": {
|
742 |
+
"content": "<obj70>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": true
|
748 |
+
},
|
749 |
+
"151736": {
|
750 |
+
"content": "<obj71>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": true
|
756 |
+
},
|
757 |
+
"151737": {
|
758 |
+
"content": "<obj72>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": true
|
764 |
+
},
|
765 |
+
"151738": {
|
766 |
+
"content": "<obj73>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": true
|
772 |
+
},
|
773 |
+
"151739": {
|
774 |
+
"content": "<obj74>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": true
|
780 |
+
},
|
781 |
+
"151740": {
|
782 |
+
"content": "<obj75>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": true
|
788 |
+
},
|
789 |
+
"151741": {
|
790 |
+
"content": "<obj76>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": true
|
796 |
+
},
|
797 |
+
"151742": {
|
798 |
+
"content": "<obj77>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": true
|
804 |
+
},
|
805 |
+
"151743": {
|
806 |
+
"content": "<obj78>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": true
|
812 |
+
},
|
813 |
+
"151744": {
|
814 |
+
"content": "<obj79>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": true
|
820 |
+
},
|
821 |
+
"151745": {
|
822 |
+
"content": "<obj80>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": true
|
828 |
+
},
|
829 |
+
"151746": {
|
830 |
+
"content": "<obj81>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": true
|
836 |
+
},
|
837 |
+
"151747": {
|
838 |
+
"content": "<obj82>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": true
|
844 |
+
},
|
845 |
+
"151748": {
|
846 |
+
"content": "<obj83>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": true
|
852 |
+
},
|
853 |
+
"151749": {
|
854 |
+
"content": "<obj84>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"151750": {
|
862 |
+
"content": "<obj85>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"151751": {
|
870 |
+
"content": "<obj86>",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": true
|
876 |
+
},
|
877 |
+
"151752": {
|
878 |
+
"content": "<obj87>",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": true
|
884 |
+
},
|
885 |
+
"151753": {
|
886 |
+
"content": "<obj88>",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": true
|
892 |
+
},
|
893 |
+
"151754": {
|
894 |
+
"content": "<obj89>",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": true
|
900 |
+
},
|
901 |
+
"151755": {
|
902 |
+
"content": "<obj90>",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": true
|
908 |
+
},
|
909 |
+
"151756": {
|
910 |
+
"content": "<obj91>",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": true
|
916 |
+
},
|
917 |
+
"151757": {
|
918 |
+
"content": "<obj92>",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": true
|
924 |
+
},
|
925 |
+
"151758": {
|
926 |
+
"content": "<obj93>",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": true
|
932 |
+
},
|
933 |
+
"151759": {
|
934 |
+
"content": "<obj94>",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": true
|
940 |
+
},
|
941 |
+
"151760": {
|
942 |
+
"content": "<obj95>",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": true
|
948 |
+
},
|
949 |
+
"151761": {
|
950 |
+
"content": "<obj96>",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": true
|
956 |
+
},
|
957 |
+
"151762": {
|
958 |
+
"content": "<obj97>",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": true
|
964 |
+
},
|
965 |
+
"151763": {
|
966 |
+
"content": "<obj98>",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": true
|
972 |
+
},
|
973 |
+
"151764": {
|
974 |
+
"content": "<obj99>",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": true
|
980 |
+
},
|
981 |
+
"151765": {
|
982 |
+
"content": "<ground>",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": true
|
988 |
+
},
|
989 |
+
"151766": {
|
990 |
+
"content": "</ground>",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": true
|
996 |
+
},
|
997 |
+
"151767": {
|
998 |
+
"content": "<objects>",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": true
|
1004 |
+
},
|
1005 |
+
"151768": {
|
1006 |
+
"content": "</objects>",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": true
|
1012 |
+
}
|
1013 |
+
},
|
1014 |
+
"additional_special_tokens": [
|
1015 |
+
"<|im_start|>",
|
1016 |
+
"<|im_end|>",
|
1017 |
+
"<|object_ref_start|>",
|
1018 |
+
"<|object_ref_end|>",
|
1019 |
+
"<|box_start|>",
|
1020 |
+
"<|box_end|>",
|
1021 |
+
"<|quad_start|>",
|
1022 |
+
"<|quad_end|>",
|
1023 |
+
"<|vision_start|>",
|
1024 |
+
"<|vision_end|>",
|
1025 |
+
"<|vision_pad|>",
|
1026 |
+
"<|image_pad|>",
|
1027 |
+
"<|video_pad|>",
|
1028 |
+
"<obj0>",
|
1029 |
+
"<obj1>",
|
1030 |
+
"<obj2>",
|
1031 |
+
"<obj3>",
|
1032 |
+
"<obj4>",
|
1033 |
+
"<obj5>",
|
1034 |
+
"<obj6>",
|
1035 |
+
"<obj7>",
|
1036 |
+
"<obj8>",
|
1037 |
+
"<obj9>",
|
1038 |
+
"<obj10>",
|
1039 |
+
"<obj11>",
|
1040 |
+
"<obj12>",
|
1041 |
+
"<obj13>",
|
1042 |
+
"<obj14>",
|
1043 |
+
"<obj15>",
|
1044 |
+
"<obj16>",
|
1045 |
+
"<obj17>",
|
1046 |
+
"<obj18>",
|
1047 |
+
"<obj19>",
|
1048 |
+
"<obj20>",
|
1049 |
+
"<obj21>",
|
1050 |
+
"<obj22>",
|
1051 |
+
"<obj23>",
|
1052 |
+
"<obj24>",
|
1053 |
+
"<obj25>",
|
1054 |
+
"<obj26>",
|
1055 |
+
"<obj27>",
|
1056 |
+
"<obj28>",
|
1057 |
+
"<obj29>",
|
1058 |
+
"<obj30>",
|
1059 |
+
"<obj31>",
|
1060 |
+
"<obj32>",
|
1061 |
+
"<obj33>",
|
1062 |
+
"<obj34>",
|
1063 |
+
"<obj35>",
|
1064 |
+
"<obj36>",
|
1065 |
+
"<obj37>",
|
1066 |
+
"<obj38>",
|
1067 |
+
"<obj39>",
|
1068 |
+
"<obj40>",
|
1069 |
+
"<obj41>",
|
1070 |
+
"<obj42>",
|
1071 |
+
"<obj43>",
|
1072 |
+
"<obj44>",
|
1073 |
+
"<obj45>",
|
1074 |
+
"<obj46>",
|
1075 |
+
"<obj47>",
|
1076 |
+
"<obj48>",
|
1077 |
+
"<obj49>",
|
1078 |
+
"<obj50>",
|
1079 |
+
"<obj51>",
|
1080 |
+
"<obj52>",
|
1081 |
+
"<obj53>",
|
1082 |
+
"<obj54>",
|
1083 |
+
"<obj55>",
|
1084 |
+
"<obj56>",
|
1085 |
+
"<obj57>",
|
1086 |
+
"<obj58>",
|
1087 |
+
"<obj59>",
|
1088 |
+
"<obj60>",
|
1089 |
+
"<obj61>",
|
1090 |
+
"<obj62>",
|
1091 |
+
"<obj63>",
|
1092 |
+
"<obj64>",
|
1093 |
+
"<obj65>",
|
1094 |
+
"<obj66>",
|
1095 |
+
"<obj67>",
|
1096 |
+
"<obj68>",
|
1097 |
+
"<obj69>",
|
1098 |
+
"<obj70>",
|
1099 |
+
"<obj71>",
|
1100 |
+
"<obj72>",
|
1101 |
+
"<obj73>",
|
1102 |
+
"<obj74>",
|
1103 |
+
"<obj75>",
|
1104 |
+
"<obj76>",
|
1105 |
+
"<obj77>",
|
1106 |
+
"<obj78>",
|
1107 |
+
"<obj79>",
|
1108 |
+
"<obj80>",
|
1109 |
+
"<obj81>",
|
1110 |
+
"<obj82>",
|
1111 |
+
"<obj83>",
|
1112 |
+
"<obj84>",
|
1113 |
+
"<obj85>",
|
1114 |
+
"<obj86>",
|
1115 |
+
"<obj87>",
|
1116 |
+
"<obj88>",
|
1117 |
+
"<obj89>",
|
1118 |
+
"<obj90>",
|
1119 |
+
"<obj91>",
|
1120 |
+
"<obj92>",
|
1121 |
+
"<obj93>",
|
1122 |
+
"<obj94>",
|
1123 |
+
"<obj95>",
|
1124 |
+
"<obj96>",
|
1125 |
+
"<obj97>",
|
1126 |
+
"<obj98>",
|
1127 |
+
"<obj99>",
|
1128 |
+
"<ground>",
|
1129 |
+
"</ground>",
|
1130 |
+
"<objects>",
|
1131 |
+
"</objects>"
|
1132 |
+
],
|
1133 |
+
"bos_token": null,
|
1134 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
1135 |
+
"clean_up_tokenization_spaces": false,
|
1136 |
+
"eos_token": "<|im_end|>",
|
1137 |
+
"errors": "replace",
|
1138 |
+
"extra_special_tokens": {},
|
1139 |
+
"model_max_length": 2048,
|
1140 |
+
"pad_token": null,
|
1141 |
+
"padding_side": "right",
|
1142 |
+
"split_special_tokens": false,
|
1143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
1144 |
+
"unk_token": null
|
1145 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|