layoutlm-mcocr

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0293
  • Ddress: {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217}
  • Eller: {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234}
  • Imestamp: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211}
  • Otal Cost: {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213}
  • Overall Precision: 0.9909
  • Overall Recall: 0.992
  • Overall F1: 0.9914
  • Overall Accuracy: 0.9960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ddress Eller Imestamp Otal Cost Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3063 1.0 55 0.0304 {'precision': 0.9585253456221198, 'recall': 0.9585253456221198, 'f1': 0.9585253456221198, 'number': 217} {'precision': 0.991304347826087, 'recall': 0.9743589743589743, 'f1': 0.9827586206896551, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.986046511627907, 'recall': 0.9953051643192489, 'f1': 0.9906542056074766, 'number': 213} 0.9828 0.9806 0.9817 0.9912
0.0332 2.0 110 0.0303 {'precision': 0.967741935483871, 'recall': 0.967741935483871, 'f1': 0.967741935483871, 'number': 217} {'precision': 0.991304347826087, 'recall': 0.9743589743589743, 'f1': 0.9827586206896551, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9906976744186047, 'recall': 1.0, 'f1': 0.9953271028037384, 'number': 213} 0.9874 0.9851 0.9863 0.9928
0.0174 3.0 165 0.0252 {'precision': 0.9723502304147466, 'recall': 0.9723502304147466, 'f1': 0.9723502304147466, 'number': 217} {'precision': 0.9872340425531915, 'recall': 0.9914529914529915, 'f1': 0.9893390191897654, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.9906542056074766, 'recall': 0.9953051643192489, 'f1': 0.9929742388758782, 'number': 213} 0.9863 0.9886 0.9874 0.9944
0.0145 4.0 220 0.0271 {'precision': 0.967741935483871, 'recall': 0.967741935483871, 'f1': 0.967741935483871, 'number': 217} {'precision': 0.9913793103448276, 'recall': 0.9829059829059829, 'f1': 0.9871244635193134, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.9906542056074766, 'recall': 0.9953051643192489, 'f1': 0.9929742388758782, 'number': 213} 0.9863 0.9851 0.9857 0.9936
0.0114 5.0 275 0.0254 {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217} {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.9906542056074766, 'recall': 0.9953051643192489, 'f1': 0.9929742388758782, 'number': 213} 0.9886 0.9897 0.9891 0.9952
0.0079 6.0 330 0.0273 {'precision': 0.9723502304147466, 'recall': 0.9723502304147466, 'f1': 0.9723502304147466, 'number': 217} {'precision': 0.9872340425531915, 'recall': 0.9914529914529915, 'f1': 0.9893390191897654, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.9906542056074766, 'recall': 0.9953051643192489, 'f1': 0.9929742388758782, 'number': 213} 0.9863 0.9886 0.9874 0.9944
0.0053 7.0 385 0.0259 {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217} {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213} 0.9909 0.992 0.9914 0.9960
0.005 8.0 440 0.0255 {'precision': 0.9723502304147466, 'recall': 0.9723502304147466, 'f1': 0.9723502304147466, 'number': 217} {'precision': 0.9872340425531915, 'recall': 0.9914529914529915, 'f1': 0.9893390191897654, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.9906542056074766, 'recall': 0.9953051643192489, 'f1': 0.9929742388758782, 'number': 213} 0.9863 0.9886 0.9874 0.9944
0.0034 9.0 495 0.0281 {'precision': 0.9768518518518519, 'recall': 0.9723502304147466, 'f1': 0.97459584295612, 'number': 217} {'precision': 0.9872340425531915, 'recall': 0.9914529914529915, 'f1': 0.9893390191897654, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213} 0.9897 0.9909 0.9903 0.9952
0.0032 10.0 550 0.0290 {'precision': 0.9723502304147466, 'recall': 0.9723502304147466, 'f1': 0.9723502304147466, 'number': 217} {'precision': 0.9914163090128756, 'recall': 0.9871794871794872, 'f1': 0.9892933618843683, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.9906542056074766, 'recall': 0.9953051643192489, 'f1': 0.9929742388758782, 'number': 213} 0.9874 0.9874 0.9874 0.9944
0.0032 11.0 605 0.0306 {'precision': 0.9723502304147466, 'recall': 0.9723502304147466, 'f1': 0.9723502304147466, 'number': 217} {'precision': 0.9913793103448276, 'recall': 0.9829059829059829, 'f1': 0.9871244635193134, 'number': 234} {'precision': 0.995260663507109, 'recall': 0.995260663507109, 'f1': 0.995260663507109, 'number': 211} {'precision': 0.986046511627907, 'recall': 0.9953051643192489, 'f1': 0.9906542056074766, 'number': 213} 0.9863 0.9863 0.9863 0.9936
0.0018 12.0 660 0.0273 {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217} {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213} 0.9909 0.992 0.9914 0.9960
0.0007 13.0 715 0.0266 {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217} {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213} 0.9909 0.992 0.9914 0.9960
0.0006 14.0 770 0.0292 {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217} {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213} 0.9909 0.992 0.9914 0.9960
0.0006 15.0 825 0.0293 {'precision': 0.9769585253456221, 'recall': 0.9769585253456221, 'f1': 0.9769585253456222, 'number': 217} {'precision': 0.9914529914529915, 'recall': 0.9914529914529915, 'f1': 0.9914529914529915, 'number': 234} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 211} {'precision': 0.9953271028037384, 'recall': 1.0, 'f1': 0.9976580796252927, 'number': 213} 0.9909 0.992 0.9914 0.9960

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for HungNguyen142/layoutlm-mcocr

Finetuned
(162)
this model