Uploaded model

  • Developed by: Hktm
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

推論方法

from tqdm import tqdm
from unsloth import FastLanguageModel
import torch
import json

model_name = "Hktm/llm-jp-3-13b-sft3"

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    max_seq_length=2048,
    dtype=None,
    load_in_4bit=True,
    token = HF_TOKEN,
)

FastLanguageModel.for_inference(model)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", mode="r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""


PROMPT_TEMPLATE_WO_DEMO = """### 指示:
下記の質問に回答してください。

### 質問:
{}

### 回答:"""

SPLIT_WORD = "### 回答:"


results = []
for dt in tqdm(datasets):
    input = dt["input"]

    prompt = PROMPT_TEMPLATE_WO_DEMO.format(input).strip()
    inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
    outputs = model.generate(
        **inputs,
        max_new_tokens = 2048,
        use_cache = True,
        do_sample=False,
        repetition_penalty=1.2
        )
    _pred = tokenizer.decode(outputs[0], skip_special_tokens=True)
    prediction = _pred.split(SPLIT_WORD)[-1].strip()

    result = {
        "task_id": dt["task_id"],
        "input": input,
        "output": prediction,
        # "pred_src": pred_src
        }
    print("\n")
    print(json.dumps(result, ensure_ascii=False, indent=2))

    results.append(result)

with open(
    f"/content/drive/MyDrive/Colab Notebooks/data/20241123_MatsuoLLM_Final/{model_name}_output.jsonl", 
    mode='w',
    encoding='utf-8'
    ) as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Hktm/llm-jp-3-13b-sft3

Finetuned
(1124)
this model