metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Frequent headaches and muscle soreness are a result of my insomnia.
sentences:
- >-
My frequent headaches and muscle soreness are a direct result of my
insomnia.
- >-
A manic episode often prevents me from sitting still or relaxing as I
constantly need to be on the move.
- >-
The fear of being away from familiar places during a panic attack is why
I have refused job opportunities with travel obligations.
- source_sentence: My insomnia results in frequent headaches and muscle soreness for me.
sentences:
- Due to my insomnia, I have frequent headaches and muscle soreness.
- >-
Thoughts of life not being worth living and feelings of hopelessness
create a difficult challenge for me.
- >-
The fear of being away from familiar places during a panic attack is why
I have refused job opportunities with travel obligations.
- source_sentence: Faced with a snake, fear takes over and I stay frozen until it passes.
sentences:
- >-
Whenever I encounter a snake, I freeze in fear and cannot move until it
is gone.
- >-
Due to a sense of unworthiness of happiness, I struggle to enjoy
activities that were once my favorites.
- >-
The fear of being away from familiar places during a panic attack is why
I have refused job opportunities with travel obligations.
- source_sentence: The idea of overdosing on medication crosses my mind when overwhelmed.
sentences:
- >-
Thoughts of overdosing on medication often occur to me when I'm
overwhelmed.
- >-
I, almost like being stuck in a loop, repeat certain actions or words
without any clear purpose at times.
- >-
The fear of being away from familiar places during a panic attack is why
I have refused job opportunities with travel obligations.
- source_sentence: Insomnia has led me to experience frequent headaches and muscle soreness.
sentences:
- >-
My insomnia has caused me to experience frequent headaches and muscle
soreness.
- >-
I struggle with distinguishing between reality and illusions when I feel
detached from reality at times.
- >-
The fear of being away from familiar places during a panic attack is why
I have refused job opportunities with travel obligations.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: FT label aug
type: FT_label_aug
metrics:
- type: pearson_cosine
value: 0.42561450628852554
name: Pearson Cosine
- type: spearman_cosine
value: 0.23253817395631948
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5095430319125491
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.23187290173483613
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5153981915417447
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.232538168642362
name: Spearman Euclidean
- type: pearson_dot
value: 0.4256145064012167
name: Pearson Dot
- type: spearman_dot
value: 0.23253817993475548
name: Spearman Dot
- type: pearson_max
value: 0.5153981915417447
name: Pearson Max
- type: spearman_max
value: 0.23253817993475548
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Hgkang00/FT-label-aug-consent-10")
# Run inference
sentences = [
'Insomnia has led me to experience frequent headaches and muscle soreness.',
'My insomnia has caused me to experience frequent headaches and muscle soreness.',
'I struggle with distinguishing between reality and illusions when I feel detached from reality at times.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
FT_label_aug
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4256 |
spearman_cosine | 0.2325 |
pearson_manhattan | 0.5095 |
spearman_manhattan | 0.2319 |
pearson_euclidean | 0.5154 |
spearman_euclidean | 0.2325 |
pearson_dot | 0.4256 |
spearman_dot | 0.2325 |
pearson_max | 0.5154 |
spearman_max | 0.2325 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 133,800 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 11 tokens
- mean: 31.63 tokens
- max: 63 tokens
- min: 14 tokens
- mean: 25.22 tokens
- max: 41 tokens
- min: -1.0
- mean: -0.92
- max: 1.0
- Samples:
sentence1 sentence2 score Presence of one or more of the following intrusion symptoms associated with the traumatic event: recurrent distressing memories, dreams, flashbacks, psychological distress, or physiological reactions to cues of the traumatic event.
I avoid making phone calls, even to close friends or family, because I'm afraid of saying something wrong or sounding awkward.
0.0
The phobic object or situation almost always provokes immediate fear or anxiety.
I find it hard to stick to a consistent eating schedule, sometimes going days without feeling the need to eat at all.
-1.0
The fear or anxiety is out of proportion to the actual danger posed by the specific object or situation and to the sociocultural context.
I have difficulty going to places where I feel there are no immediate exits, such as cinemas or auditoriums, as the fear of being stuck or unable to escape escalates my anxiety.
-1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 104,225 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 11 tokens
- mean: 31.24 tokens
- max: 63 tokens
- min: 15 tokens
- mean: 24.86 tokens
- max: 41 tokens
- min: -1.0
- mean: -0.93
- max: 1.0
- Samples:
sentence1 sentence2 score Excessive anxiety and worry occurring more days than not for at least 6 months, about a number of events or activities such as work or school performance.
Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.
-1.0
The individual fears acting in a way or showing anxiety symptoms that will be negatively evaluated, leading to humiliation, embarrassment, rejection, or offense to others.
I often find myself mindlessly snacking throughout the day due to changes in my appetite.
-1.0
Persistent avoidance of stimuli associated with the trauma, evidenced by avoiding distressing memories, thoughts, or feelings, or external reminders of the event.
Simple activities like going for a walk or doing household chores feel like daunting tasks due to my low energy levels.
-1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 256per_device_eval_batch_size
: 128num_train_epochs
: 10warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | FT_label_aug_spearman_cosine |
---|---|---|---|---|
1.0 | 523 | 7.773 | - | - |
2.0 | 1046 | 0.0004 | - | - |
2.9828 | 1560 | - | 11.8818 | 0.2184 |
1.0172 | 1569 | 0.1169 | - | - |
2.0172 | 2092 | 5.4076 | - | - |
3.0172 | 2615 | 0.0002 | - | - |
3.9828 | 3120 | - | 11.8669 | 0.2054 |
2.0344 | 3138 | 0.1571 | - | - |
3.0344 | 3661 | 4.0179 | - | - |
4.0344 | 4184 | 0.0001 | - | - |
4.9828 | 4680 | - | 12.8814 | 0.2291 |
3.0516 | 4707 | 0.1592 | - | - |
4.0516 | 5230 | 2.835 | 13.5336 | 0.2325 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}