Heather-Driver's picture
Classification Training
2bc58b7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-classn-LinearAlg-finetuned-pred-span-width-2
    results: []

distilbert-classn-LinearAlg-finetuned-pred-span-width-2

This model is a fine-tuned version of dslim/distilbert-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6166
  • Accuracy: 0.8333
  • F1: 0.8321
  • Precision: 0.8444
  • Recall: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
5.0405 0.6849 50 2.4804 0.0556 0.0339 0.0253 0.0556
4.9397 1.3699 100 2.4514 0.0714 0.0438 0.0322 0.0714
4.8593 2.0548 150 2.4005 0.0794 0.0627 0.0607 0.0794
4.7519 2.7397 200 2.3404 0.1905 0.1699 0.1849 0.1905
4.7117 3.4247 250 2.2563 0.2698 0.2785 0.3828 0.2698
4.4979 4.1096 300 2.1144 0.3810 0.3625 0.3976 0.3810
4.1155 4.7945 350 1.9127 0.5635 0.5591 0.6445 0.5635
3.5796 5.4795 400 1.6802 0.6032 0.6019 0.7030 0.6032
3.0998 6.1644 450 1.4151 0.6984 0.6879 0.7921 0.6984
2.5176 6.8493 500 1.1687 0.7698 0.7665 0.7902 0.7698
1.9411 7.5342 550 0.9922 0.7619 0.7633 0.8083 0.7619
1.4025 8.2192 600 0.8374 0.8095 0.8088 0.8457 0.8095
1.0761 8.9041 650 0.7305 0.8175 0.8124 0.8412 0.8175
0.8084 9.5890 700 0.6920 0.8254 0.8202 0.8502 0.8254
0.5516 10.2740 750 0.6456 0.8333 0.8328 0.8705 0.8333
0.4201 10.9589 800 0.6497 0.8175 0.8102 0.8566 0.8175
0.2738 11.6438 850 0.5939 0.8333 0.8337 0.8524 0.8333
0.235 12.3288 900 0.6067 0.8413 0.8397 0.8641 0.8413
0.1387 13.0137 950 0.5975 0.8333 0.8306 0.8496 0.8333
0.1154 13.6986 1000 0.5704 0.8413 0.8389 0.8515 0.8413
0.0715 14.3836 1050 0.5859 0.8413 0.8397 0.8536 0.8413
0.0741 15.0685 1100 0.5732 0.8413 0.8393 0.8510 0.8413
0.0545 15.7534 1150 0.6005 0.8333 0.8310 0.8512 0.8333
0.0354 16.4384 1200 0.6069 0.8413 0.8398 0.8564 0.8413
0.0435 17.1233 1250 0.6056 0.8413 0.8389 0.8515 0.8413
0.0305 17.8082 1300 0.6066 0.8413 0.8393 0.8558 0.8413
0.02 18.4932 1350 0.6091 0.8333 0.8315 0.8427 0.8333
0.0271 19.1781 1400 0.6121 0.8333 0.8315 0.8427 0.8333
0.0211 19.8630 1450 0.6166 0.8333 0.8321 0.8444 0.8333

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0