How to Use
# Preprocess Image
def process_image(image, model):
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(image).unsqueeze(0)
input_tensor = input_tensor.to(device)
with torch.no_grad():
output = model(input_tensor)
predicted_count = output.item()
print(f"Predicted Headcount: {predicted_count}")
return math.ceil(predicted_count)
# Load Model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_model(selected_model):
model = None
model_path = None
if selected_model == 'VGG16':
model = models.VGG16()
model_path = "vgg16_headcount.pth"
else:
model = models.ResNet50()
model_path = "resnet50_headcount.pth"
model.load_state_dict(torch.load(model_path, map_location=device, weights_only=True))
model.to(device)
model.eval()
print(f"{selected_model}.Heavy Model loaded successfully")
return model
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.