yizhao-risk-en-scorer

Introduction

This is a BERT model fine-tuned on a high-quality English financial dataset. It generates a security risk score, which helps to identify and remove data with security risks from financial datasets, thereby reducing the proportion of illegal or undesirable data. For the complete data cleaning process, please refer to YiZhao.

Quickstart

Here is an example code snippet for generating security risk scores using this model.

from transformers import AutoTokenizer, AutoModelForSequenceClassification

text = "You are a smart robot"
risk_model_name = "risk-model-en-v0.1"

risk_tokenizer = AutoTokenizer.from_pretrained(risk_model_name)
risk_model = AutoModelForSequenceClassification.from_pretrained(risk_model_name)

risk_inputs = risk_tokenizer(text, return_tensors="pt", padding="longest", truncation=True)
risk_outputs = risk_model(**risk_inputs)
risk_logits = risk_outputs.logits.squeeze(-1).float().detach().numpy()

risk_score = risk_logits.item()

result = {
    "text": text,
    "risk_score": risk_score
}

print(result)
# {'text': 'You are a smart robot', 'risk_score': 0.11226219683885574}
Downloads last month
120
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Collection including HIT-TMG/yizhao-risk-en-scorer