Bart_mediasum
This model is a fine-tuned version of facebook/bart-large on the mediasum dataset. It achieves the following results on the evaluation set:
- Loss: 1.9021
- Rouge1: 0.3236
- Rouge2: 0.1651
- Rougel: 0.2953
- Rougelsum: 0.2953
- Gen Len: 15.7946
- Precision: 0.8858
- Recall: 0.8739
- F1: 0.8795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|---|---|---|---|
2.1171 | 1.0 | 4621 | 2.0135 | 0.3138 | 0.1556 | 0.2853 | 0.2853 | 16.4704 | 0.8836 | 0.8717 | 0.8773 |
1.9804 | 2.0 | 9242 | 1.9440 | 0.3147 | 0.1581 | 0.2864 | 0.2866 | 16.2207 | 0.8831 | 0.8725 | 0.8775 |
1.8971 | 3.0 | 13863 | 1.9157 | 0.3209 | 0.1638 | 0.2925 | 0.2926 | 15.4676 | 0.8857 | 0.8733 | 0.8792 |
1.8449 | 4.0 | 18484 | 1.9021 | 0.3236 | 0.1651 | 0.2953 | 0.2953 | 15.7946 | 0.8858 | 0.8739 | 0.8795 |
Framework versions
- Transformers 4.36.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.15.0
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for GlycerinLOL/Bart_mediasum
Base model
facebook/bart-largeEvaluation results
- Rouge1 on mediasumvalidation set self-reported0.324
- Precision on mediasumvalidation set self-reported0.886
- Recall on mediasumvalidation set self-reported0.874
- F1 on mediasumvalidation set self-reported0.879