bert-base-multilingual-cased-ary
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1286
- Accuracy: 0.7417
- F1 Binary: 0.4374
- Precision: 0.3149
- Recall: 0.7159
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 24
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 121 | 0.1409 | 0.7153 | 0.3468 | 0.2557 | 0.5387 |
No log | 2.0 | 242 | 0.1267 | 0.5761 | 0.3666 | 0.2319 | 0.8745 |
No log | 3.0 | 363 | 0.1342 | 0.7469 | 0.4227 | 0.3108 | 0.6605 |
No log | 4.0 | 484 | 0.1286 | 0.7417 | 0.4374 | 0.3149 | 0.7159 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for FrinzTheCoder/bert-base-multilingual-cased-ary
Base model
google-bert/bert-base-multilingual-cased