bert-base-multilingual-cased-amh
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1213
- Accuracy: 0.6854
- F1 Binary: 0.4627
- Precision: 0.3422
- Recall: 0.7141
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 53
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 267 | 0.1291 | 0.4986 | 0.4145 | 0.2662 | 0.9356 |
0.124 | 2.0 | 534 | 0.1251 | 0.7129 | 0.4703 | 0.3618 | 0.6720 |
0.124 | 3.0 | 801 | 0.1221 | 0.6709 | 0.4591 | 0.3335 | 0.7364 |
0.114 | 4.0 | 1068 | 0.1213 | 0.6854 | 0.4627 | 0.3422 | 0.7141 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for FrinzTheCoder/bert-base-multilingual-cased-amh
Base model
google-bert/bert-base-multilingual-cased