|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from io import BytesIO |
|
from typing import Dict, List |
|
|
|
import imageio |
|
import numpy as np |
|
|
|
|
|
def read_prompts_from_file(prompt_file: str) -> List[Dict[str, str]]: |
|
"""Read prompts from a JSONL file where each line is a dict with 'prompt' key and optionally 'visual_input' key. |
|
|
|
Args: |
|
prompt_file (str): Path to JSONL file containing prompts |
|
|
|
Returns: |
|
List[Dict[str, str]]: List of prompt dictionaries |
|
""" |
|
prompts = [] |
|
with open(prompt_file, "r") as f: |
|
for line in f: |
|
prompt_dict = json.loads(line.strip()) |
|
prompts.append(prompt_dict) |
|
return prompts |
|
|
|
|
|
def save_video(video, fps, H, W, video_save_quality, video_save_path): |
|
"""Save video frames to file. |
|
|
|
Args: |
|
grid (np.ndarray): Video frames array [T,H,W,C] |
|
fps (int): Frames per second |
|
H (int): Frame height |
|
W (int): Frame width |
|
video_save_quality (int): Video encoding quality (0-10) |
|
video_save_path (str): Output video file path |
|
""" |
|
kwargs = { |
|
"fps": fps, |
|
"quality": video_save_quality, |
|
"macro_block_size": 1, |
|
"ffmpeg_params": ["-s", f"{W}x{H}"], |
|
"output_params": ["-f", "mp4"], |
|
} |
|
imageio.mimsave(video_save_path, video, "mp4", **kwargs) |
|
|
|
|
|
def load_from_fileobj(filepath: str, format: str = "mp4", mode: str = "rgb", **kwargs): |
|
""" |
|
Load video from a file-like object using imageio with specified format and color mode. |
|
|
|
Parameters: |
|
file (IO[bytes]): A file-like object containing video data. |
|
format (str): Format of the video file (default 'mp4'). |
|
mode (str): Color mode of the video, 'rgb' or 'gray' (default 'rgb'). |
|
|
|
Returns: |
|
tuple: A tuple containing an array of video frames and metadata about the video. |
|
""" |
|
with open(filepath, "rb") as f: |
|
value = f.read() |
|
with BytesIO(value) as f: |
|
f.seek(0) |
|
video_reader = imageio.get_reader(f, format, **kwargs) |
|
|
|
video_frames = [] |
|
for frame in video_reader: |
|
if mode == "gray": |
|
import cv2 |
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) |
|
frame = np.expand_dims(frame, axis=2) |
|
video_frames.append(frame) |
|
|
|
return np.array(video_frames), video_reader.get_meta_data() |
|
|