# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from io import BytesIO from typing import Dict, List import imageio import numpy as np def read_prompts_from_file(prompt_file: str) -> List[Dict[str, str]]: """Read prompts from a JSONL file where each line is a dict with 'prompt' key and optionally 'visual_input' key. Args: prompt_file (str): Path to JSONL file containing prompts Returns: List[Dict[str, str]]: List of prompt dictionaries """ prompts = [] with open(prompt_file, "r") as f: for line in f: prompt_dict = json.loads(line.strip()) prompts.append(prompt_dict) return prompts def save_video(video, fps, H, W, video_save_quality, video_save_path): """Save video frames to file. Args: grid (np.ndarray): Video frames array [T,H,W,C] fps (int): Frames per second H (int): Frame height W (int): Frame width video_save_quality (int): Video encoding quality (0-10) video_save_path (str): Output video file path """ kwargs = { "fps": fps, "quality": video_save_quality, "macro_block_size": 1, "ffmpeg_params": ["-s", f"{W}x{H}"], "output_params": ["-f", "mp4"], } imageio.mimsave(video_save_path, video, "mp4", **kwargs) def load_from_fileobj(filepath: str, format: str = "mp4", mode: str = "rgb", **kwargs): """ Load video from a file-like object using imageio with specified format and color mode. Parameters: file (IO[bytes]): A file-like object containing video data. format (str): Format of the video file (default 'mp4'). mode (str): Color mode of the video, 'rgb' or 'gray' (default 'rgb'). Returns: tuple: A tuple containing an array of video frames and metadata about the video. """ with open(filepath, "rb") as f: value = f.read() with BytesIO(value) as f: f.seek(0) video_reader = imageio.get_reader(f, format, **kwargs) video_frames = [] for frame in video_reader: if mode == "gray": import cv2 # Convert frame to grayscale if mode is gray frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = np.expand_dims(frame, axis=2) # Keep frame dimensions consistent video_frames.append(frame) return np.array(video_frames), video_reader.get_meta_data()