DiffusionText2WorldGeneration
/
cosmos1
/models
/diffusion
/networks
/general_dit_video_conditioned.py
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional | |
| import torch | |
| from einops import rearrange | |
| from torch import nn | |
| from cosmos1.models.diffusion.conditioner import DataType | |
| from cosmos1.models.diffusion.module.blocks import TimestepEmbedding, Timesteps | |
| from cosmos1.models.diffusion.networks.general_dit import GeneralDIT | |
| from cosmos1.utils import log | |
| class VideoExtendGeneralDIT(GeneralDIT): | |
| def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs): | |
| self.add_augment_sigma_embedding = add_augment_sigma_embedding | |
| # extra channel for video condition mask | |
| super().__init__(*args, in_channels=in_channels, **kwargs) | |
| log.debug(f"VideoExtendGeneralDIT in_channels: {in_channels}") | |
| def build_additional_timestamp_embedder(self): | |
| super().build_additional_timestamp_embedder() | |
| if self.add_augment_sigma_embedding: | |
| log.info("Adding augment sigma embedding") | |
| self.augment_sigma_embedder = nn.Sequential( | |
| Timesteps(self.model_channels), | |
| TimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora), | |
| ) | |
| def initialize_weights(self): | |
| if self.add_augment_sigma_embedding: | |
| # Initialize timestep embedding for augment sigma | |
| nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02) | |
| if self.augment_sigma_embedder[1].linear_1.bias is not None: | |
| nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0) | |
| nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02) | |
| if self.augment_sigma_embedder[1].linear_2.bias is not None: | |
| nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0) | |
| super().initialize_weights() # Call this last since it wil call TP weight init | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| crossattn_emb: torch.Tensor, | |
| crossattn_mask: Optional[torch.Tensor] = None, | |
| fps: Optional[torch.Tensor] = None, | |
| image_size: Optional[torch.Tensor] = None, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| scalar_feature: Optional[torch.Tensor] = None, | |
| data_type: Optional[DataType] = DataType.VIDEO, | |
| video_cond_bool: Optional[torch.Tensor] = None, | |
| condition_video_indicator: Optional[torch.Tensor] = None, | |
| condition_video_input_mask: Optional[torch.Tensor] = None, | |
| condition_video_augment_sigma: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """Forward pass of the video-conditioned DIT model. | |
| Args: | |
| x: Input tensor of shape (B, C, T, H, W) | |
| timesteps: Timestep tensor of shape (B,) | |
| crossattn_emb: Cross attention embeddings of shape (B, N, D) | |
| crossattn_mask: Optional cross attention mask of shape (B, N) | |
| fps: Optional frames per second tensor | |
| image_size: Optional image size tensor | |
| padding_mask: Optional padding mask tensor | |
| scalar_feature: Optional scalar features tensor | |
| data_type: Type of data being processed (default: DataType.VIDEO) | |
| video_cond_bool: Optional video conditioning boolean tensor | |
| condition_video_indicator: Optional video condition indicator tensor | |
| condition_video_input_mask: Required mask tensor for video data type | |
| condition_video_augment_sigma: Optional sigma values for conditional input augmentation | |
| **kwargs: Additional keyword arguments | |
| Returns: | |
| torch.Tensor: Output tensor | |
| """ | |
| B, C, T, H, W = x.shape | |
| if data_type == DataType.VIDEO: | |
| assert condition_video_input_mask is not None, "condition_video_input_mask is required for video data type" | |
| input_list = [x, condition_video_input_mask] | |
| x = torch.cat( | |
| input_list, | |
| dim=1, | |
| ) | |
| return super().forward( | |
| x=x, | |
| timesteps=timesteps, | |
| crossattn_emb=crossattn_emb, | |
| crossattn_mask=crossattn_mask, | |
| fps=fps, | |
| image_size=image_size, | |
| padding_mask=padding_mask, | |
| scalar_feature=scalar_feature, | |
| data_type=data_type, | |
| condition_video_augment_sigma=condition_video_augment_sigma, | |
| **kwargs, | |
| ) | |
| def forward_before_blocks( | |
| self, | |
| x: torch.Tensor, | |
| timesteps: torch.Tensor, | |
| crossattn_emb: torch.Tensor, | |
| crossattn_mask: Optional[torch.Tensor] = None, | |
| fps: Optional[torch.Tensor] = None, | |
| image_size: Optional[torch.Tensor] = None, | |
| padding_mask: Optional[torch.Tensor] = None, | |
| scalar_feature: Optional[torch.Tensor] = None, | |
| data_type: Optional[DataType] = DataType.VIDEO, | |
| latent_condition: Optional[torch.Tensor] = None, | |
| latent_condition_sigma: Optional[torch.Tensor] = None, | |
| condition_video_augment_sigma: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: (B, C, T, H, W) tensor of spatial-temp inputs | |
| timesteps: (B, ) tensor of timesteps | |
| crossattn_emb: (B, N, D) tensor of cross-attention embeddings | |
| crossattn_mask: (B, N) tensor of cross-attention masks | |
| condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation | |
| """ | |
| del kwargs | |
| assert isinstance( | |
| data_type, DataType | |
| ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." | |
| original_shape = x.shape | |
| x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( | |
| x, | |
| fps=fps, | |
| padding_mask=padding_mask, | |
| latent_condition=latent_condition, | |
| latent_condition_sigma=latent_condition_sigma, | |
| ) | |
| # logging affline scale information | |
| affline_scale_log_info = {} | |
| timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) | |
| affline_emb_B_D = timesteps_B_D | |
| affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() | |
| if scalar_feature is not None: | |
| raise NotImplementedError("Scalar feature is not implemented yet.") | |
| if self.add_augment_sigma_embedding: | |
| if condition_video_augment_sigma is None: | |
| # Handling image case | |
| # Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function | |
| assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type" | |
| condition_video_augment_sigma = torch.zeros_like(timesteps.flatten()) | |
| affline_augment_sigma_emb_B_D, _ = self.augment_sigma_embedder(condition_video_augment_sigma.flatten()) | |
| affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D | |
| affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() | |
| affline_emb_B_D = self.affline_norm(affline_emb_B_D) | |
| if self.use_cross_attn_mask: | |
| crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] | |
| else: | |
| crossattn_mask = None | |
| x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") | |
| if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
| extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( | |
| extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" | |
| ) | |
| crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") | |
| if crossattn_mask: | |
| crossattn_mask = rearrange(crossattn_mask, "B M -> M B") | |
| output = { | |
| "x": x, | |
| "affline_emb_B_D": affline_emb_B_D, | |
| "crossattn_emb": crossattn_emb, | |
| "crossattn_mask": crossattn_mask, | |
| "rope_emb_L_1_1_D": rope_emb_L_1_1_D, | |
| "adaln_lora_B_3D": adaln_lora_B_3D, | |
| "original_shape": original_shape, | |
| "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, | |
| } | |
| return output | |