File size: 9,054 Bytes
01a383f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import torch
from einops import rearrange
from torch import nn

from cosmos1.models.diffusion.conditioner import DataType
from cosmos1.models.diffusion.module.blocks import TimestepEmbedding, Timesteps
from cosmos1.models.diffusion.networks.general_dit import GeneralDIT
from cosmos1.utils import log


class VideoExtendGeneralDIT(GeneralDIT):
    def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
        self.add_augment_sigma_embedding = add_augment_sigma_embedding

        # extra channel for video condition mask
        super().__init__(*args, in_channels=in_channels, **kwargs)
        log.debug(f"VideoExtendGeneralDIT in_channels: {in_channels}")

    def build_additional_timestamp_embedder(self):
        super().build_additional_timestamp_embedder()
        if self.add_augment_sigma_embedding:
            log.info("Adding augment sigma embedding")
            self.augment_sigma_embedder = nn.Sequential(
                Timesteps(self.model_channels),
                TimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora),
            )

    def initialize_weights(self):
        if self.add_augment_sigma_embedding:
            # Initialize timestep embedding for augment sigma
            nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02)
            if self.augment_sigma_embedder[1].linear_1.bias is not None:
                nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0)
            nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02)
            if self.augment_sigma_embedder[1].linear_2.bias is not None:
                nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0)

        super().initialize_weights()  # Call this last since it wil call TP weight init

    def forward(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        video_cond_bool: Optional[torch.Tensor] = None,
        condition_video_indicator: Optional[torch.Tensor] = None,
        condition_video_input_mask: Optional[torch.Tensor] = None,
        condition_video_augment_sigma: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """Forward pass of the video-conditioned DIT model.

        Args:
            x: Input tensor of shape (B, C, T, H, W)
            timesteps: Timestep tensor of shape (B,)
            crossattn_emb: Cross attention embeddings of shape (B, N, D)
            crossattn_mask: Optional cross attention mask of shape (B, N)
            fps: Optional frames per second tensor
            image_size: Optional image size tensor
            padding_mask: Optional padding mask tensor
            scalar_feature: Optional scalar features tensor
            data_type: Type of data being processed (default: DataType.VIDEO)
            video_cond_bool: Optional video conditioning boolean tensor
            condition_video_indicator: Optional video condition indicator tensor
            condition_video_input_mask: Required mask tensor for video data type
            condition_video_augment_sigma: Optional sigma values for conditional input augmentation
            **kwargs: Additional keyword arguments

        Returns:
            torch.Tensor: Output tensor
        """
        B, C, T, H, W = x.shape

        if data_type == DataType.VIDEO:
            assert condition_video_input_mask is not None, "condition_video_input_mask is required for video data type"

            input_list = [x, condition_video_input_mask]
            x = torch.cat(
                input_list,
                dim=1,
            )

        return super().forward(
            x=x,
            timesteps=timesteps,
            crossattn_emb=crossattn_emb,
            crossattn_mask=crossattn_mask,
            fps=fps,
            image_size=image_size,
            padding_mask=padding_mask,
            scalar_feature=scalar_feature,
            data_type=data_type,
            condition_video_augment_sigma=condition_video_augment_sigma,
            **kwargs,
        )

    def forward_before_blocks(
        self,
        x: torch.Tensor,
        timesteps: torch.Tensor,
        crossattn_emb: torch.Tensor,
        crossattn_mask: Optional[torch.Tensor] = None,
        fps: Optional[torch.Tensor] = None,
        image_size: Optional[torch.Tensor] = None,
        padding_mask: Optional[torch.Tensor] = None,
        scalar_feature: Optional[torch.Tensor] = None,
        data_type: Optional[DataType] = DataType.VIDEO,
        latent_condition: Optional[torch.Tensor] = None,
        latent_condition_sigma: Optional[torch.Tensor] = None,
        condition_video_augment_sigma: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        """
        Args:
            x: (B, C, T, H, W) tensor of spatial-temp inputs
            timesteps: (B, ) tensor of timesteps
            crossattn_emb: (B, N, D) tensor of cross-attention embeddings
            crossattn_mask: (B, N) tensor of cross-attention masks

            condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
        """
        del kwargs
        assert isinstance(
            data_type, DataType
        ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
        original_shape = x.shape
        x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
            x,
            fps=fps,
            padding_mask=padding_mask,
            latent_condition=latent_condition,
            latent_condition_sigma=latent_condition_sigma,
        )
        # logging affline scale information
        affline_scale_log_info = {}

        timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
        affline_emb_B_D = timesteps_B_D
        affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()

        if scalar_feature is not None:
            raise NotImplementedError("Scalar feature is not implemented yet.")

        if self.add_augment_sigma_embedding:
            if condition_video_augment_sigma is None:
                # Handling image case
                # Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
                assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
                condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())

            affline_augment_sigma_emb_B_D, _ = self.augment_sigma_embedder(condition_video_augment_sigma.flatten())
            affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
        affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
        affline_emb_B_D = self.affline_norm(affline_emb_B_D)

        if self.use_cross_attn_mask:
            crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool)  # [B, 1, 1, length]
        else:
            crossattn_mask = None

        x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
        if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
            extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
                extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
            )
        crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
        if crossattn_mask:
            crossattn_mask = rearrange(crossattn_mask, "B M -> M B")

        output = {
            "x": x,
            "affline_emb_B_D": affline_emb_B_D,
            "crossattn_emb": crossattn_emb,
            "crossattn_mask": crossattn_mask,
            "rope_emb_L_1_1_D": rope_emb_L_1_1_D,
            "adaln_lora_B_3D": adaln_lora_B_3D,
            "original_shape": original_shape,
            "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
        }
        return output