File size: 9,054 Bytes
01a383f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from einops import rearrange
from torch import nn
from cosmos1.models.diffusion.conditioner import DataType
from cosmos1.models.diffusion.module.blocks import TimestepEmbedding, Timesteps
from cosmos1.models.diffusion.networks.general_dit import GeneralDIT
from cosmos1.utils import log
class VideoExtendGeneralDIT(GeneralDIT):
def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
self.add_augment_sigma_embedding = add_augment_sigma_embedding
# extra channel for video condition mask
super().__init__(*args, in_channels=in_channels, **kwargs)
log.debug(f"VideoExtendGeneralDIT in_channels: {in_channels}")
def build_additional_timestamp_embedder(self):
super().build_additional_timestamp_embedder()
if self.add_augment_sigma_embedding:
log.info("Adding augment sigma embedding")
self.augment_sigma_embedder = nn.Sequential(
Timesteps(self.model_channels),
TimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora),
)
def initialize_weights(self):
if self.add_augment_sigma_embedding:
# Initialize timestep embedding for augment sigma
nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_1.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0)
nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_2.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0)
super().initialize_weights() # Call this last since it wil call TP weight init
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Forward pass of the video-conditioned DIT model.
Args:
x: Input tensor of shape (B, C, T, H, W)
timesteps: Timestep tensor of shape (B,)
crossattn_emb: Cross attention embeddings of shape (B, N, D)
crossattn_mask: Optional cross attention mask of shape (B, N)
fps: Optional frames per second tensor
image_size: Optional image size tensor
padding_mask: Optional padding mask tensor
scalar_feature: Optional scalar features tensor
data_type: Type of data being processed (default: DataType.VIDEO)
video_cond_bool: Optional video conditioning boolean tensor
condition_video_indicator: Optional video condition indicator tensor
condition_video_input_mask: Required mask tensor for video data type
condition_video_augment_sigma: Optional sigma values for conditional input augmentation
**kwargs: Additional keyword arguments
Returns:
torch.Tensor: Output tensor
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert condition_video_input_mask is not None, "condition_video_input_mask is required for video data type"
input_list = [x, condition_video_input_mask]
x = torch.cat(
input_list,
dim=1,
)
return super().forward(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
if self.add_augment_sigma_embedding:
if condition_video_augment_sigma is None:
# Handling image case
# Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())
affline_augment_sigma_emb_B_D, _ = self.augment_sigma_embedder(condition_video_augment_sigma.flatten())
affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output
|