metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- hate_speech18
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: distilbert-base-uncased-finetuned_on_hata_dateset
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: hate_speech18
type: hate_speech18
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9178338001867413
- name: F1
type: f1
value: 0.9154943774479662
- name: Recall
type: recall
value: 0.9178338001867413
- name: Precision
type: precision
value: 0.9137800286953446
distilbert-base-uncased-finetuned_on_hata_dateset
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the hate_speech18 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0451
- Accuracy: 0.9178
- F1: 0.9155
- Recall: 0.9178
- Precision: 0.9138
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
0.3342 | 1.0 | 268 | 0.3774 | 0.8497 | 0.8702 | 0.8497 | 0.9131 |
0.2411 | 2.0 | 536 | 0.4330 | 0.9020 | 0.9097 | 0.9020 | 0.9237 |
0.1374 | 3.0 | 804 | 0.5690 | 0.8964 | 0.9050 | 0.8964 | 0.9206 |
0.0804 | 4.0 | 1072 | 1.0798 | 0.9188 | 0.9140 | 0.9188 | 0.9117 |
0.0428 | 5.0 | 1340 | 1.0451 | 0.9178 | 0.9155 | 0.9178 | 0.9138 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1