New Version of LunarLander
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-EV3.zip +3 -0
- ppo-LunarLander-v2-EV3/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-EV3/data +99 -0
- ppo-LunarLander-v2-EV3/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-EV3/policy.pth +3 -0
- ppo-LunarLander-v2-EV3/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-EV3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 258.72 +/- 23.34
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae6b04f16c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae6b04f1750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae6b04f17e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae6b04f1870>", "_build": "<function ActorCriticPolicy._build at 0x7ae6b04f1900>", "forward": "<function ActorCriticPolicy.forward at 0x7ae6b04f1990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae6b04f1a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae6b04f1ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae6b04f1b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae6b04f1bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae6b04f1c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae6b04f1cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae6b0483d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701153061193367819, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3B3LxGF4g/aNv+u6OOjr5YZxO7qq8APQAAAAAAAAAAwBuqPhQP17za5je5/0CRN0tgAb6LWFk4AACAPwAAgD8z/1S8iN//Pqpo4r3PUo++xXaNu+rDALwAAAAAAAAAACCwL74FGMM8kNPRPCn/iru4RFO+9r+VPAAAAAAAAAAAU2klvqFInz53nAQ9QZMpvtfyt7sdj008AAAAAAAAAABmdq06ksfTPDkXor1dNhu+g3DCu2Mudz0AAAAAAAAAAC37L777coy8aUIrvA2+qroAafA9epaIOwAAgD8AAIA/M4JYvasyqz9yKw6/2WPRvouLbLt4UBC+AAAAAAAAAAAA/jw8INE/P+An2z1aY4a+nJW7Pd1RjzsAAAAAAAAAAHAvhb6fsj8/Ou5dvRYggL6XSly9AF3XPAAAAAAAAAAArT4zPsAsjT+vOAQ/LMK1vrv4Tz7sxQg+AAAAAAAAAABq7us+nUCAP82fcD4nubG+vr9GPsOpVzwAAAAAAAAAAI3Af75PsyM9eSFDunJJBTl6p76+VQH1NwAAAAAAAAAAjbUvPmHBprzAbra5Vu0+OIhhEr6wk/04AACAPwAAgD+AD0y+YxktP67VOjxBTX++iD2PvBDhv70AAAAAAAAAAID2pL1pMBC8hsPDvC7HtDwXRoy91qeUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0KvVurIYGMAWyUTUABjAF0lEdAoa/TfFaStHV9lChoBkfAJH9q1w5vL2gHTRYBaAhHQKGv1Ex7AtZ1fZQoaAZHQHAxXEIgNgBoB01EAWgIR0ChsJU8vEjxdX2UKGgGR0BpVEqFyq+8aAdNvAFoCEdAobFbPhQ3xXV9lChoBkdAaqOWdmQKbGgHTWQBaAhHQKGxwKAJ9iN1fZQoaAZHQFvCkZrHlwNoB03oA2gIR0Chs7mMOwxGdX2UKGgGR0AlyRXfZVXFaAdNAgFoCEdAobQxEx7AtXV9lChoBkdAYEfLpRoAXGgHTegDaAhHQKG2ZTKkl/p1fZQoaAZHQG4co5PuXu5oB00zAWgIR0Chtx2D6FdtdX2UKGgGR0Bv9K++M6zWaAdNQAFoCEdAobgf4bjtHHV9lChoBkdAXyIzEaVD8mgHTegDaAhHQKG5d3N9ph51fZQoaAZHQGm2Sy+pOvdoB022AWgIR0Chuio7Njb0dX2UKGgGR0BsBu/gzguRaAdNVgFoCEdAobrIaDPGAHV9lChoBkdAbQ441gpjMGgHTT8BaAhHQKG6+3rleWx1fZQoaAZHQFsEE2Hck+poB03oA2gIR0Chuxj+rELqdX2UKGgGR0BtdKzLOiWWaAdNmAFoCEdAobt+FzuF6HV9lChoBkdAbax+0gKWs2gHTUYBaAhHQKG71HEuQIV1fZQoaAZHQBQVJlJ6IFhoB00/AWgIR0ChvAUfozN2dX2UKGgGR0ASF+2E0zj4aAdL/GgIR0Chvbzw+dK/dX2UKGgGR0BieJ1JUYKqaAdN6ANoCEdAob3z5/LDAXV9lChoBkdAajzxeb/ff2gHTZcBaAhHQKG/sgdwNsp1fZQoaAZHQGxMrO7g88toB01GAWgIR0ChwN65Xlr/dX2UKGgGR0AuHbMX7+DOaAdNCgFoCEdAocEZOFg2InV9lChoBkdAbrXZjhDPW2gHTVEBaAhHQKHCv6iTMaF1fZQoaAZHQG91keQuEmJoB006AWgIR0ChwvLVWjoIdX2UKGgGR0BtaCh8IAwPaAdNSQFoCEdAocM7WmP5pXV9lChoBkdAab5Xr+o992gHTVIBaAhHQKHcesSTQmh1fZQoaAZHQG+t7u+h4+toB01pAWgIR0Ch3W3evZAZdX2UKGgGR0BsuBpWV/tqaAdNLwFoCEdAod5TVQQ+U3V9lChoBkdAbQtZMcp9Z2gHTXYBaAhHQKHgE28Zk091fZQoaAZHQGxMQ9q1w5xoB01NAWgIR0Ch4S9JBgNPdX2UKGgGR0BtdEZpBX0YaAdNPwFoCEdAoeJAtnPE9HV9lChoBkdAYdeUr08NhGgHTegDaAhHQKHizIK+i8F1fZQoaAZHQGxXyc9W6shoB01oAWgIR0Ch40PDYRNAdX2UKGgGR0Bob5gE2YOUaAdNnAJoCEdAoeO80Jng53V9lChoBkdAbtfExZdOZmgHTTwBaAhHQKHj+DEm6Xl1fZQoaAZHQGgw1RtP559oB00+AWgIR0Ch5EIZhrnDdX2UKGgGR0BbtSN0eU6gaAdN6ANoCEdAoeRTXJ5miHV9lChoBkdAbc5xLkCFK2gHTTcBaAhHQKHlJk078vV1fZQoaAZHQFpgxLkCFK1oB03oA2gIR0Ch6HXqAz55dX2UKGgGR0BrmXjp9qk/aAdNqgFoCEdAoekKzw+dLHV9lChoBkdAbHBxeb/ff2gHTXoBaAhHQKHqw3GXHBF1fZQoaAZHQGFekcsDnvFoB03oA2gIR0Ch61PRZ2ZBdX2UKGgGR0BsM/jsD4gzaAdNcQFoCEdAoevjoW56MXV9lChoBkdAcHz/lhgE2mgHTTEBaAhHQKHsBNdqtYB1fZQoaAZHQHBKgxBVuJloB01bAWgIR0Ch7Og4XGfgdX2UKGgGR0BthgYk3S8baAdNOQFoCEdAoe0iVfNRnHV9lChoBkdAbG6uxrzoU2gHTXkBaAhHQKHtUb9ZRsN1fZQoaAZHQGyPbTDwYtRoB01OAWgIR0Ch7X/gBLf2dX2UKGgGR0Bs5pA2Q4jsaAdNYAFoCEdAoe6f0/W1+nV9lChoBkdAZFjK1XvH92gHTegDaAhHQKHvS/iYLLJ1fZQoaAZHQGvWQA2hqTNoB02FAWgIR0Ch77y+pOvddX2UKGgGR0Bw4oUypJf6aAdNLAFoCEdAofIDlJYkmnV9lChoBkdAcEoFspG4JGgHTWsBaAhHQKH0Ln13+uN1fZQoaAZHQG8XH4XXRPZoB01CAWgIR0Ch9LZvDP4VdX2UKGgGR0Bq4R7AtWdVaAdNRQFoCEdAofU6eI2wV3V9lChoBkdAbKA87IT4+WgHTWMBaAhHQKH2LQAuIyl1fZQoaAZHQG8HlJg9eQdoB01CAWgIR0Ch9lpFb3XadX2UKGgGR0BsJtHOKO1faAdNVgFoCEdAofaPoouwo3V9lChoBkdAWwyQ8wHqvGgHTegDaAhHQKH3SB19v0h1fZQoaAZHQGvMrQw9JSRoB01fAWgIR0Ch+CRGlQ/HdX2UKGgGR0Bs9vdTHbRGaAdNSAFoCEdAofgqcLBsRHV9lChoBkdAckLxG2Cul2gHTaABaAhHQKH4cixFAml1fZQoaAZHQG3f+irT6SFoB006AWgIR0CiEdWrfcesdX2UKGgGR0BefM8s+V1PaAdN6ANoCEdAohIhhc7henV9lChoBkfALdOLBKtga2gHTRYBaAhHQKITZ531SO11fZQoaAZHwBYZsfq5byJoB0v6aAhHQKIUQqkM1CR1fZQoaAZHQHBSmWdEsrdoB01oAWgIR0CiFPEBKcurdX2UKGgGR8AzDtKqXF98aAdL1mgIR0CiFQh0ZFXrdX2UKGgGR0BvIndfsu3+aAdNQAFoCEdAohXRC2MKkXV9lChoBkdAbP6Hoouwo2gHTVUBaAhHQKIWMbo8p1B1fZQoaAZHQG9OgzP8hs9oB01jAWgIR0CiF4SU1Q67dX2UKGgGR0Bid0SM98qnaAdN6ANoCEdAohgAR7JGOXV9lChoBkdAcRd3VTaTOmgHTYABaAhHQKIZCam4y451fZQoaAZHwBUVbu+h4+toB00zAWgIR0CiGRxZuAI6dX2UKGgGR0A2yzfJmuklaAdLz2gIR0CiGeKjJuEVdX2UKGgGR0BsHQrhBJI2aAdNTwFoCEdAohoPAKv3anV9lChoBkdAcCZBnBciW2gHTUUBaAhHQKIbD8VpKz11fZQoaAZHQG+KQztTkyVoB00lAWgIR0CiGyerELpidX2UKGgGR0Bfw5XuE25yaAdN6ANoCEdAohx1qJuVHHV9lChoBkfAJCv7el9Br2gHTR8BaAhHQKIcdeUILPV1fZQoaAZHQGq7g6+36RBoB01OAWgIR0CiHed0A93bdX2UKGgGR0BwVkkJKJ2uaAdNkANoCEdAoh4LB/I8yXV9lChoBkdAW9Zr/Khcq2gHTegDaAhHQKIePctXgcd1fZQoaAZHQGw1Ow5eZ5RoB00sAWgIR0CiHmrP+n63dX2UKGgGRz+2xOclPacqaAdNKAFoCEdAoh7BAyEcsHV9lChoBkdAKg4eLehwl2gHTR8BaAhHQKIfn4qwyIp1fZQoaAZHQHCnOzY287JoB00qAWgIR0CiIOjbBXS0dX2UKGgGR8A5ONMoMKCyaAdNGQFoCEdAoiHKlk6LfnV9lChoBkfARMGZw4sEq2gHTRYBaAhHQKIh0uaF23d1fZQoaAZHQGtCX++/QBxoB01kAWgIR0CiIoZIQOFydX2UKGgGR0BsCxtNzr/saAdNPwFoCEdAoiTr9S/CZXV9lChoBkdAX+WTPjXFtWgHTegDaAhHQKImNq7Ackt1fZQoaAZHQGfGAc1fmcRoB02AAWgIR0CiJ1aFmFrVdX2UKGgGR0Bwg9kDp1RtaAdNPQFoCEdAoidhdpqREHV9lChoBkdAbslzYEnss2gHTUQBaAhHQKInaQI2OyV1fZQoaAZHQG5JCYkVvddoB01WAWgIR0CiKLuP/7zkdX2UKGgGR0BoM0FEAo5QaAdNgwFoCEdAoimx+nZTQ3V9lChoBkdAYHWxM36yjmgHTegDaAhHQKIqIr5IpYt1fZQoaAZHQG0/7iqABktoB02LAmgIR0CiKqtEPUaydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b77ae7cd990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b77ae7cda20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b77ae7cdab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b77ae7cdb40>", "_build": "<function ActorCriticPolicy._build at 0x7b77ae7cdbd0>", "forward": "<function ActorCriticPolicy.forward at 0x7b77ae7cdc60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b77ae7cdcf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b77ae7cdd80>", "_predict": "<function ActorCriticPolicy._predict at 0x7b77ae7cde10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b77ae7cdea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b77ae7cdf30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b77ae7cdfc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b77ae965680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701166901667106243, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN4272ZeKk/QA4mv0f81b6J0oq9YCepvgAAAAAAAAAAMxyTvWwprD6YvJg+Z8GfvrvGeD34TkU9AAAAAAAAAADNAaQ9DeVYP9jHDz6wDa2+Uu6ZPZJiWrwAAAAAAAAAAE22UD6dzBk/Cy+APBxmu77IovM9P+8VvQAAAAAAAAAA42SuPtuLKj87TmC+PVyhvnGNVD3w5ZO9AAAAAAAAAADtIUM+EqCTPmrif76hdYa+f6IrvM7+bzwAAAAAAAAAACo0X75+E5k/DOkAvwQXub7qG4q+UtoyvgAAAAAAAAAAAG1JPbgC8zoXXDU+POtAvnZLwDw6RTG/AAAAAAAAgD/NwSo+BdioP5LR8z6N2q++8s05PnJdtT0AAAAAAAAAALNoDj1C2IM/vi/jO2/Ftr4yHmc9VyoXuwAAAAAAAAAAALRDPZ9A2bv64h+8+3qGPDQ4J731mmM9AACAPwAAgD/gJU0+C1NCPworvD13soS+nhn5PTS2ArwAAAAAAAAAAAAz7jw2050/KvgEPpzf5r6oWAg8sw7eOwAAAAAAAAAAJh8AvpRnzztCVIo+sSSyvlNkRD03OTu9AAAAAAAAAAAmipy9+zCkvHb+ejyxzuq8qnncPXvhcT4AAIA/AACAP2M+mD57uXU/UuOBPl42kr4D85M+D6ewvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAURyjpLVaMAWyUTWcBjAF0lEdAk28qQFLWZ3V9lChoBkdAcWvnhbW3B2gHTVEBaAhHQJNvPlijL0V1fZQoaAZHQG/fLx7RfF9oB00/AWgIR0CTb+NtqHoHdX2UKGgGR0Bx3q8Zk079aAdNWgFoCEdAk3ABUWEbpHV9lChoBkdAcfSfdyksSWgHTa4CaAhHQJNwJDArQPZ1fZQoaAZHQHI62ys0YTFoB01JAWgIR0CTcWV2zOX3dX2UKGgGR0BzDEOskpqiaAdNJgFoCEdAk3GY1UEPlXV9lChoBkdAbZAbayrxRWgHTRABaAhHQJNyvdGiHqN1fZQoaAZHQHJRtU83dbhoB026AmgIR0CTc1hxo7FLdX2UKGgGR0Bx6bR8c+7laAdNRAFoCEdAk3QsoUi6hHV9lChoBkdAb+9/jsD4g2gHTR4BaAhHQJN0NtIkJKJ1fZQoaAZHQHMfap97WupoB01OAWgIR0CTdHoF3Y+TdX2UKGgGR0BvamVJL/S6aAdNNQFoCEdAk3SbaqS5iHV9lChoBkdAcn7aXrt3OmgHTT4BaAhHQJN2tuKoAGV1fZQoaAZHQGvokIomXw9oB00gAWgIR0CTdspQ1rIpdX2UKGgGR0Bt36yv9tMxaAdNFwFoCEdAk3kVNg0CR3V9lChoBkdAb1rwkxASnWgHTTIBaAhHQJN5QJv5xip1fZQoaAZHQHOH+y/sVtZoB00xAWgIR0CTeklwcYIjdX2UKGgGR0BuQGJgssg/aAdNRQFoCEdAk3qxxo7FKnV9lChoBkdAcLVkgwGnoGgHTXABaAhHQJN7FX3g1m91fZQoaAZHQHAe0puuRtBoB01pAWgIR0CTezsjVx0ddX2UKGgGR0Bs8J0GNaQnaAdNIQFoCEdAk3t6whW5pnV9lChoBkdAc6dBmf5DZ2gHTSoBaAhHQJN7jrzGxUx1fZQoaAZHQHE0WrXDm8xoB00jAWgIR0CTfTZm7J4jdX2UKGgGR0By3y4/eLvUaAdNIgFoCEdAk34H8fmtAHV9lChoBkdAcYfPi1iON2gHTU8BaAhHQJN+Ep1A7gd1fZQoaAZHQEkjFdcB2fVoB0vVaAhHQJN+K8CgbqB1fZQoaAZHQG0do1+AmRhoB00nAWgIR0CTfjdAgPmQdX2UKGgGR0Br2SEpRXOoaAdNcAFoCEdAk4DJ+QU5/HV9lChoBkdAckhua4MF2WgHTVQBaAhHQJOCL+4smOV1fZQoaAZHQHC3UL2HtWxoB00tAWgIR0CTgzA93bEhdX2UKGgGR0BykRhhH9WIaAdNPQFoCEdAk4P+ndfsu3V9lChoBkdAcBtgxagVXWgHTTUBaAhHQJOEwNy5qdp1fZQoaAZHQG15wYDTz/ZoB001AWgIR0CThdf9gnc+dX2UKGgGR0BFcBNucc2jaAdL2WgIR0CThf2i+L3sdX2UKGgGR0Bw596yB06paAdNNgFoCEdAk4Y+sLfDUHV9lChoBkdAcMd/o7muDGgHTQgBaAhHQJOGrSPU8V51fZQoaAZHQHFYHcHnln1oB01LAWgIR0CThyBHCoCNdX2UKGgGR0Btvv7xd6cBaAdNWwFoCEdAk4cxUrCm/HV9lChoBkdAcTXOGj9GZ2gHTSoBaAhHQJOI6Ei+tbN1fZQoaAZHQG7riOearm1oB003AWgIR0CTiZ4G2TgVdX2UKGgGR0BuAAwK0D2baAdNRgFoCEdAk4qCxZ+x4nV9lChoBkdAb3EIgNgBtGgHTSYBaAhHQJONDIHTqjd1fZQoaAZHQG/YqFIuoP1oB006AWgIR0CTj/JK8L8adX2UKGgGR0BwudSXMQmNaAdNMwFoCEdAk6KHpGFzuHV9lChoBkdAb//qqwQlKWgHTS4BaAhHQJOjHvuw5eZ1fZQoaAZHQEyj4eLehwloB0v1aAhHQJOjcp/gBLh1fZQoaAZHQEZxN4Z/CqJoB0vraAhHQJOjmsCDEm91fZQoaAZHQDWFZU1hsqJoB00OAWgIR0CTo/YZ2pyZdX2UKGgGR0BxzSWqtHQQaAdNIAFoCEdAk6RDewcHW3V9lChoBkdAb0RMoMKCx2gHTXYCaAhHQJOk3WiDdxh1fZQoaAZHQHC1+UpuuRtoB01VAWgIR0CTpSaTwDvFdX2UKGgGR0BwEy7pV0cPaAdNbAFoCEdAk6bswUQCjnV9lChoBkdAb25INmUW22gHTWMBaAhHQJOnrcqOLix1fZQoaAZHQHA305uIhyNoB01DAWgIR0CTqDdn003wdX2UKGgGR0BtSWbVjI7vaAdNVAFoCEdAk6k6zE74jHV9lChoBkdAcO5fJV81GmgHTUsBaAhHQJOphsHjZL91fZQoaAZHQHEKc8xKxs5oB01CAWgIR0CTqymZE2HddX2UKGgGR0Bv8E74i5d4aAdNEQFoCEdAk6uFlkH2RXV9lChoBkdAZb3rNW2gF2gHTegDaAhHQJOrqfHxSYR1fZQoaAZHQE3MlhPTG5toB0viaAhHQJOr2A/cFhZ1fZQoaAZHQHIAXyEtdzJoB00ZAWgIR0CTrGSxJNCadX2UKGgGR0Bsr98gIQe4aAdNAwFoCEdAk6yJWaMJhXV9lChoBkdAbTk5yU9py2gHTRkBaAhHQJOs2cslLOB1fZQoaAZHQG5R+b/ffoBoB00RAWgIR0CTrNhY/3WXdX2UKGgGR0Bv9RDkU9IPaAdNKAFoCEdAk64bKzRhMXV9lChoBkdAS3AuXeFcp2gHS+poCEdAk66V8PWhAXV9lChoBkdAch1St/4Ir2gHTSUBaAhHQJOuyP2f0291fZQoaAZHQHHhKlHjIaNoB00SAWgIR0CTsEjGDL8rdX2UKGgGR0BsQ/TLGJemaAdNJQFoCEdAk7KHSro4dnV9lChoBkdAOCc0cfeUIWgHS+FoCEdAk7K7GvOhTXV9lChoBkdAbmkxrzoUz2gHTSgBaAhHQJOzAB6rvLJ1fZQoaAZHQHDTBshxHXpoB01PAWgIR0CTsvfhMrVfdX2UKGgGR0BvMxvP1L8KaAdNOQFoCEdAk7VRpxm03XV9lChoBkdAcO/b1yvLYGgHTfsBaAhHQJO11eyAxzt1fZQoaAZHQHFzC5NGmUJoB005AWgIR0CTtdPMSsbOdX2UKGgGR0Bwu2VC5VfeaAdNNgFoCEdAk7bR3NcGDHV9lChoBkdAblQ8NhE0BWgHTT4BaAhHQJO27101ZT11fZQoaAZHQHH8gg1WKdhoB01EAWgIR0CTt6kfLcKxdX2UKGgGR0By1jOE/SpjaAdNSQFoCEdAk7fZha1Ti3V9lChoBkdAcF69i+cpb2gHTSQBaAhHQJO4JKVY6n11fZQoaAZHQHHNgLApKBdoB00pAWgIR0CTuRGQ0XP7dX2UKGgGR0BwikNlRP43aAdNMwFoCEdAk7kpq/M4cXV9lChoBkdAcFGZgG8mKWgHTTIBaAhHQJO7DKkl/pd1fZQoaAZHQHFWSrxRVIZoB00MAWgIR0CTvAxJNCZ4dX2UKGgGR0Byqu7nPmgbaAdNJwFoCEdAk7zRF3IMjXV9lChoBkdAcYob8WKuS2gHTRgCaAhHQJO9RutOmBR1fZQoaAZHQHAvorSVnmJoB01AAWgIR0CTvhr0rbxmdX2UKGgGR0BtzLUkOZssaAdNEwFoCEdAk77jTa0x/XV9lChoBkdAb9AHnEETx2gHTWMBaAhHQJO/uOXE61d1fZQoaAZHQHETPetSydFoB00QAWgIR0CTwjlbeMyadX2UKGgGR0BwdCUxEfDDaAdNVwFoCEdAk8M5J9RaYHV9lChoBkdAcdFDwH7gsWgHTSUBaAhHQJPD7LbHp8p1fZQoaAZHQHMWYOtnwodoB01YAWgIR0CTxLQz1scidX2UKGgGR0BwUD27FsHjaAdNiAFoCEdAk8Wwswtap3V9lChoBkdAcpxpy6tknWgHTTEBaAhHQJPGELofSx91fZQoaAZHQG6f3kgfU4JoB01BAWgIR0CTxrZB9kSVdX2UKGgGR0Bx7379AHE/aAdNhQFoCEdAk8bCtV7x/nV9lChoBkdAbxeRJVbRnmgHTXoBaAhHQJPHUMZxaPl1fZQoaAZHQHFNyAhB7eFoB00XAWgIR0CTx5HmA9V4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-EV3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:307a7dd409274c0d154087450f56a5c13adc9c182cfd0519512e5c595a125795
|
3 |
+
size 148046
|
ppo-LunarLander-v2-EV3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-EV3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b77ae7cd990>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b77ae7cda20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b77ae7cdab0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b77ae7cdb40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b77ae7cdbd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b77ae7cdc60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b77ae7cdcf0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b77ae7cdd80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b77ae7cde10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b77ae7cdea0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b77ae7cdf30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b77ae7cdfc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b77ae965680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1701166901667106243,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN4272ZeKk/QA4mv0f81b6J0oq9YCepvgAAAAAAAAAAMxyTvWwprD6YvJg+Z8GfvrvGeD34TkU9AAAAAAAAAADNAaQ9DeVYP9jHDz6wDa2+Uu6ZPZJiWrwAAAAAAAAAAE22UD6dzBk/Cy+APBxmu77IovM9P+8VvQAAAAAAAAAA42SuPtuLKj87TmC+PVyhvnGNVD3w5ZO9AAAAAAAAAADtIUM+EqCTPmrif76hdYa+f6IrvM7+bzwAAAAAAAAAACo0X75+E5k/DOkAvwQXub7qG4q+UtoyvgAAAAAAAAAAAG1JPbgC8zoXXDU+POtAvnZLwDw6RTG/AAAAAAAAgD/NwSo+BdioP5LR8z6N2q++8s05PnJdtT0AAAAAAAAAALNoDj1C2IM/vi/jO2/Ftr4yHmc9VyoXuwAAAAAAAAAAALRDPZ9A2bv64h+8+3qGPDQ4J731mmM9AACAPwAAgD/gJU0+C1NCPworvD13soS+nhn5PTS2ArwAAAAAAAAAAAAz7jw2050/KvgEPpzf5r6oWAg8sw7eOwAAAAAAAAAAJh8AvpRnzztCVIo+sSSyvlNkRD03OTu9AAAAAAAAAAAmipy9+zCkvHb+ejyxzuq8qnncPXvhcT4AAIA/AACAP2M+mD57uXU/UuOBPl42kr4D85M+D6ewvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAURyjpLVaMAWyUTWcBjAF0lEdAk28qQFLWZ3V9lChoBkdAcWvnhbW3B2gHTVEBaAhHQJNvPlijL0V1fZQoaAZHQG/fLx7RfF9oB00/AWgIR0CTb+NtqHoHdX2UKGgGR0Bx3q8Zk079aAdNWgFoCEdAk3ABUWEbpHV9lChoBkdAcfSfdyksSWgHTa4CaAhHQJNwJDArQPZ1fZQoaAZHQHI62ys0YTFoB01JAWgIR0CTcWV2zOX3dX2UKGgGR0BzDEOskpqiaAdNJgFoCEdAk3GY1UEPlXV9lChoBkdAbZAbayrxRWgHTRABaAhHQJNyvdGiHqN1fZQoaAZHQHJRtU83dbhoB026AmgIR0CTc1hxo7FLdX2UKGgGR0Bx6bR8c+7laAdNRAFoCEdAk3QsoUi6hHV9lChoBkdAb+9/jsD4g2gHTR4BaAhHQJN0NtIkJKJ1fZQoaAZHQHMfap97WupoB01OAWgIR0CTdHoF3Y+TdX2UKGgGR0BvamVJL/S6aAdNNQFoCEdAk3SbaqS5iHV9lChoBkdAcn7aXrt3OmgHTT4BaAhHQJN2tuKoAGV1fZQoaAZHQGvokIomXw9oB00gAWgIR0CTdspQ1rIpdX2UKGgGR0Bt36yv9tMxaAdNFwFoCEdAk3kVNg0CR3V9lChoBkdAb1rwkxASnWgHTTIBaAhHQJN5QJv5xip1fZQoaAZHQHOH+y/sVtZoB00xAWgIR0CTeklwcYIjdX2UKGgGR0BuQGJgssg/aAdNRQFoCEdAk3qxxo7FKnV9lChoBkdAcLVkgwGnoGgHTXABaAhHQJN7FX3g1m91fZQoaAZHQHAe0puuRtBoB01pAWgIR0CTezsjVx0ddX2UKGgGR0Bs8J0GNaQnaAdNIQFoCEdAk3t6whW5pnV9lChoBkdAc6dBmf5DZ2gHTSoBaAhHQJN7jrzGxUx1fZQoaAZHQHE0WrXDm8xoB00jAWgIR0CTfTZm7J4jdX2UKGgGR0By3y4/eLvUaAdNIgFoCEdAk34H8fmtAHV9lChoBkdAcYfPi1iON2gHTU8BaAhHQJN+Ep1A7gd1fZQoaAZHQEkjFdcB2fVoB0vVaAhHQJN+K8CgbqB1fZQoaAZHQG0do1+AmRhoB00nAWgIR0CTfjdAgPmQdX2UKGgGR0Br2SEpRXOoaAdNcAFoCEdAk4DJ+QU5/HV9lChoBkdAckhua4MF2WgHTVQBaAhHQJOCL+4smOV1fZQoaAZHQHC3UL2HtWxoB00tAWgIR0CTgzA93bEhdX2UKGgGR0BykRhhH9WIaAdNPQFoCEdAk4P+ndfsu3V9lChoBkdAcBtgxagVXWgHTTUBaAhHQJOEwNy5qdp1fZQoaAZHQG15wYDTz/ZoB001AWgIR0CThdf9gnc+dX2UKGgGR0BFcBNucc2jaAdL2WgIR0CThf2i+L3sdX2UKGgGR0Bw596yB06paAdNNgFoCEdAk4Y+sLfDUHV9lChoBkdAcMd/o7muDGgHTQgBaAhHQJOGrSPU8V51fZQoaAZHQHFYHcHnln1oB01LAWgIR0CThyBHCoCNdX2UKGgGR0Btvv7xd6cBaAdNWwFoCEdAk4cxUrCm/HV9lChoBkdAcTXOGj9GZ2gHTSoBaAhHQJOI6Ei+tbN1fZQoaAZHQG7riOearm1oB003AWgIR0CTiZ4G2TgVdX2UKGgGR0BuAAwK0D2baAdNRgFoCEdAk4qCxZ+x4nV9lChoBkdAb3EIgNgBtGgHTSYBaAhHQJONDIHTqjd1fZQoaAZHQG/YqFIuoP1oB006AWgIR0CTj/JK8L8adX2UKGgGR0BwudSXMQmNaAdNMwFoCEdAk6KHpGFzuHV9lChoBkdAb//qqwQlKWgHTS4BaAhHQJOjHvuw5eZ1fZQoaAZHQEyj4eLehwloB0v1aAhHQJOjcp/gBLh1fZQoaAZHQEZxN4Z/CqJoB0vraAhHQJOjmsCDEm91fZQoaAZHQDWFZU1hsqJoB00OAWgIR0CTo/YZ2pyZdX2UKGgGR0BxzSWqtHQQaAdNIAFoCEdAk6RDewcHW3V9lChoBkdAb0RMoMKCx2gHTXYCaAhHQJOk3WiDdxh1fZQoaAZHQHC1+UpuuRtoB01VAWgIR0CTpSaTwDvFdX2UKGgGR0BwEy7pV0cPaAdNbAFoCEdAk6bswUQCjnV9lChoBkdAb25INmUW22gHTWMBaAhHQJOnrcqOLix1fZQoaAZHQHA305uIhyNoB01DAWgIR0CTqDdn003wdX2UKGgGR0BtSWbVjI7vaAdNVAFoCEdAk6k6zE74jHV9lChoBkdAcO5fJV81GmgHTUsBaAhHQJOphsHjZL91fZQoaAZHQHEKc8xKxs5oB01CAWgIR0CTqymZE2HddX2UKGgGR0Bv8E74i5d4aAdNEQFoCEdAk6uFlkH2RXV9lChoBkdAZb3rNW2gF2gHTegDaAhHQJOrqfHxSYR1fZQoaAZHQE3MlhPTG5toB0viaAhHQJOr2A/cFhZ1fZQoaAZHQHIAXyEtdzJoB00ZAWgIR0CTrGSxJNCadX2UKGgGR0Bsr98gIQe4aAdNAwFoCEdAk6yJWaMJhXV9lChoBkdAbTk5yU9py2gHTRkBaAhHQJOs2cslLOB1fZQoaAZHQG5R+b/ffoBoB00RAWgIR0CTrNhY/3WXdX2UKGgGR0Bv9RDkU9IPaAdNKAFoCEdAk64bKzRhMXV9lChoBkdAS3AuXeFcp2gHS+poCEdAk66V8PWhAXV9lChoBkdAch1St/4Ir2gHTSUBaAhHQJOuyP2f0291fZQoaAZHQHHhKlHjIaNoB00SAWgIR0CTsEjGDL8rdX2UKGgGR0BsQ/TLGJemaAdNJQFoCEdAk7KHSro4dnV9lChoBkdAOCc0cfeUIWgHS+FoCEdAk7K7GvOhTXV9lChoBkdAbmkxrzoUz2gHTSgBaAhHQJOzAB6rvLJ1fZQoaAZHQHDTBshxHXpoB01PAWgIR0CTsvfhMrVfdX2UKGgGR0BvMxvP1L8KaAdNOQFoCEdAk7VRpxm03XV9lChoBkdAcO/b1yvLYGgHTfsBaAhHQJO11eyAxzt1fZQoaAZHQHFzC5NGmUJoB005AWgIR0CTtdPMSsbOdX2UKGgGR0Bwu2VC5VfeaAdNNgFoCEdAk7bR3NcGDHV9lChoBkdAblQ8NhE0BWgHTT4BaAhHQJO27101ZT11fZQoaAZHQHH8gg1WKdhoB01EAWgIR0CTt6kfLcKxdX2UKGgGR0By1jOE/SpjaAdNSQFoCEdAk7fZha1Ti3V9lChoBkdAcF69i+cpb2gHTSQBaAhHQJO4JKVY6n11fZQoaAZHQHHNgLApKBdoB00pAWgIR0CTuRGQ0XP7dX2UKGgGR0BwikNlRP43aAdNMwFoCEdAk7kpq/M4cXV9lChoBkdAcFGZgG8mKWgHTTIBaAhHQJO7DKkl/pd1fZQoaAZHQHFWSrxRVIZoB00MAWgIR0CTvAxJNCZ4dX2UKGgGR0Byqu7nPmgbaAdNJwFoCEdAk7zRF3IMjXV9lChoBkdAcYob8WKuS2gHTRgCaAhHQJO9RutOmBR1fZQoaAZHQHAvorSVnmJoB01AAWgIR0CTvhr0rbxmdX2UKGgGR0BtzLUkOZssaAdNEwFoCEdAk77jTa0x/XV9lChoBkdAb9AHnEETx2gHTWMBaAhHQJO/uOXE61d1fZQoaAZHQHETPetSydFoB00QAWgIR0CTwjlbeMyadX2UKGgGR0BwdCUxEfDDaAdNVwFoCEdAk8M5J9RaYHV9lChoBkdAcdFDwH7gsWgHTSUBaAhHQJPD7LbHp8p1fZQoaAZHQHMWYOtnwodoB01YAWgIR0CTxLQz1scidX2UKGgGR0BwUD27FsHjaAdNiAFoCEdAk8Wwswtap3V9lChoBkdAcpxpy6tknWgHTTEBaAhHQJPGELofSx91fZQoaAZHQG6f3kgfU4JoB01BAWgIR0CTxrZB9kSVdX2UKGgGR0Bx7379AHE/aAdNhQFoCEdAk8bCtV7x/nV9lChoBkdAbxeRJVbRnmgHTXoBaAhHQJPHUMZxaPl1fZQoaAZHQHFNyAhB7eFoB00XAWgIR0CTx5HmA9V4dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-EV3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56019752dd60f7bf094d01f573707a57a7937114cdfa072d5f1e5806d2ec0957
|
3 |
+
size 88362
|
ppo-LunarLander-v2-EV3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1388f385587c727c7a0870da07b6e1300372388ccec3cd97d0c414e4228ce345
|
3 |
+
size 43762
|
ppo-LunarLander-v2-EV3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-EV3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 258.7205569, "std_reward": 23.3352503480155, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-28T10:43:20.136488"}
|