Englios commited on
Commit
dce8136
·
1 Parent(s): 0437712

Lunar Lander V2 RL First mean:180

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 178.75 +/- 94.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae6b04f16c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae6b04f1750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae6b04f17e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae6b04f1870>", "_build": "<function ActorCriticPolicy._build at 0x7ae6b04f1900>", "forward": "<function ActorCriticPolicy.forward at 0x7ae6b04f1990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae6b04f1a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae6b04f1ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae6b04f1b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae6b04f1bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae6b04f1c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae6b04f1cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae6b0483d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701153061193367819, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3B3LxGF4g/aNv+u6OOjr5YZxO7qq8APQAAAAAAAAAAwBuqPhQP17za5je5/0CRN0tgAb6LWFk4AACAPwAAgD8z/1S8iN//Pqpo4r3PUo++xXaNu+rDALwAAAAAAAAAACCwL74FGMM8kNPRPCn/iru4RFO+9r+VPAAAAAAAAAAAU2klvqFInz53nAQ9QZMpvtfyt7sdj008AAAAAAAAAABmdq06ksfTPDkXor1dNhu+g3DCu2Mudz0AAAAAAAAAAC37L777coy8aUIrvA2+qroAafA9epaIOwAAgD8AAIA/M4JYvasyqz9yKw6/2WPRvouLbLt4UBC+AAAAAAAAAAAA/jw8INE/P+An2z1aY4a+nJW7Pd1RjzsAAAAAAAAAAHAvhb6fsj8/Ou5dvRYggL6XSly9AF3XPAAAAAAAAAAArT4zPsAsjT+vOAQ/LMK1vrv4Tz7sxQg+AAAAAAAAAABq7us+nUCAP82fcD4nubG+vr9GPsOpVzwAAAAAAAAAAI3Af75PsyM9eSFDunJJBTl6p76+VQH1NwAAAAAAAAAAjbUvPmHBprzAbra5Vu0+OIhhEr6wk/04AACAPwAAgD+AD0y+YxktP67VOjxBTX++iD2PvBDhv70AAAAAAAAAAID2pL1pMBC8hsPDvC7HtDwXRoy91qeUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0KvVurIYGMAWyUTUABjAF0lEdAoa/TfFaStHV9lChoBkfAJH9q1w5vL2gHTRYBaAhHQKGv1Ex7AtZ1fZQoaAZHQHAxXEIgNgBoB01EAWgIR0ChsJU8vEjxdX2UKGgGR0BpVEqFyq+8aAdNvAFoCEdAobFbPhQ3xXV9lChoBkdAaqOWdmQKbGgHTWQBaAhHQKGxwKAJ9iN1fZQoaAZHQFvCkZrHlwNoB03oA2gIR0Chs7mMOwxGdX2UKGgGR0AlyRXfZVXFaAdNAgFoCEdAobQxEx7AtXV9lChoBkdAYEfLpRoAXGgHTegDaAhHQKG2ZTKkl/p1fZQoaAZHQG4co5PuXu5oB00zAWgIR0Chtx2D6FdtdX2UKGgGR0Bv9K++M6zWaAdNQAFoCEdAobgf4bjtHHV9lChoBkdAXyIzEaVD8mgHTegDaAhHQKG5d3N9ph51fZQoaAZHQGm2Sy+pOvdoB022AWgIR0Chuio7Njb0dX2UKGgGR0BsBu/gzguRaAdNVgFoCEdAobrIaDPGAHV9lChoBkdAbQ441gpjMGgHTT8BaAhHQKG6+3rleWx1fZQoaAZHQFsEE2Hck+poB03oA2gIR0Chuxj+rELqdX2UKGgGR0BtdKzLOiWWaAdNmAFoCEdAobt+FzuF6HV9lChoBkdAbax+0gKWs2gHTUYBaAhHQKG71HEuQIV1fZQoaAZHQBQVJlJ6IFhoB00/AWgIR0ChvAUfozN2dX2UKGgGR0ASF+2E0zj4aAdL/GgIR0Chvbzw+dK/dX2UKGgGR0BieJ1JUYKqaAdN6ANoCEdAob3z5/LDAXV9lChoBkdAajzxeb/ff2gHTZcBaAhHQKG/sgdwNsp1fZQoaAZHQGxMrO7g88toB01GAWgIR0ChwN65Xlr/dX2UKGgGR0AuHbMX7+DOaAdNCgFoCEdAocEZOFg2InV9lChoBkdAbrXZjhDPW2gHTVEBaAhHQKHCv6iTMaF1fZQoaAZHQG91keQuEmJoB006AWgIR0ChwvLVWjoIdX2UKGgGR0BtaCh8IAwPaAdNSQFoCEdAocM7WmP5pXV9lChoBkdAab5Xr+o992gHTVIBaAhHQKHcesSTQmh1fZQoaAZHQG+t7u+h4+toB01pAWgIR0Ch3W3evZAZdX2UKGgGR0BsuBpWV/tqaAdNLwFoCEdAod5TVQQ+U3V9lChoBkdAbQtZMcp9Z2gHTXYBaAhHQKHgE28Zk091fZQoaAZHQGxMQ9q1w5xoB01NAWgIR0Ch4S9JBgNPdX2UKGgGR0BtdEZpBX0YaAdNPwFoCEdAoeJAtnPE9HV9lChoBkdAYdeUr08NhGgHTegDaAhHQKHizIK+i8F1fZQoaAZHQGxXyc9W6shoB01oAWgIR0Ch40PDYRNAdX2UKGgGR0Bob5gE2YOUaAdNnAJoCEdAoeO80Jng53V9lChoBkdAbtfExZdOZmgHTTwBaAhHQKHj+DEm6Xl1fZQoaAZHQGgw1RtP559oB00+AWgIR0Ch5EIZhrnDdX2UKGgGR0BbtSN0eU6gaAdN6ANoCEdAoeRTXJ5miHV9lChoBkdAbc5xLkCFK2gHTTcBaAhHQKHlJk078vV1fZQoaAZHQFpgxLkCFK1oB03oA2gIR0Ch6HXqAz55dX2UKGgGR0BrmXjp9qk/aAdNqgFoCEdAoekKzw+dLHV9lChoBkdAbHBxeb/ff2gHTXoBaAhHQKHqw3GXHBF1fZQoaAZHQGFekcsDnvFoB03oA2gIR0Ch61PRZ2ZBdX2UKGgGR0BsM/jsD4gzaAdNcQFoCEdAoevjoW56MXV9lChoBkdAcHz/lhgE2mgHTTEBaAhHQKHsBNdqtYB1fZQoaAZHQHBKgxBVuJloB01bAWgIR0Ch7Og4XGfgdX2UKGgGR0BthgYk3S8baAdNOQFoCEdAoe0iVfNRnHV9lChoBkdAbG6uxrzoU2gHTXkBaAhHQKHtUb9ZRsN1fZQoaAZHQGyPbTDwYtRoB01OAWgIR0Ch7X/gBLf2dX2UKGgGR0Bs5pA2Q4jsaAdNYAFoCEdAoe6f0/W1+nV9lChoBkdAZFjK1XvH92gHTegDaAhHQKHvS/iYLLJ1fZQoaAZHQGvWQA2hqTNoB02FAWgIR0Ch77y+pOvddX2UKGgGR0Bw4oUypJf6aAdNLAFoCEdAofIDlJYkmnV9lChoBkdAcEoFspG4JGgHTWsBaAhHQKH0Ln13+uN1fZQoaAZHQG8XH4XXRPZoB01CAWgIR0Ch9LZvDP4VdX2UKGgGR0Bq4R7AtWdVaAdNRQFoCEdAofU6eI2wV3V9lChoBkdAbKA87IT4+WgHTWMBaAhHQKH2LQAuIyl1fZQoaAZHQG8HlJg9eQdoB01CAWgIR0Ch9lpFb3XadX2UKGgGR0BsJtHOKO1faAdNVgFoCEdAofaPoouwo3V9lChoBkdAWwyQ8wHqvGgHTegDaAhHQKH3SB19v0h1fZQoaAZHQGvMrQw9JSRoB01fAWgIR0Ch+CRGlQ/HdX2UKGgGR0Bs9vdTHbRGaAdNSAFoCEdAofgqcLBsRHV9lChoBkdAckLxG2Cul2gHTaABaAhHQKH4cixFAml1fZQoaAZHQG3f+irT6SFoB006AWgIR0CiEdWrfcesdX2UKGgGR0BefM8s+V1PaAdN6ANoCEdAohIhhc7henV9lChoBkfALdOLBKtga2gHTRYBaAhHQKITZ531SO11fZQoaAZHwBYZsfq5byJoB0v6aAhHQKIUQqkM1CR1fZQoaAZHQHBSmWdEsrdoB01oAWgIR0CiFPEBKcurdX2UKGgGR8AzDtKqXF98aAdL1mgIR0CiFQh0ZFXrdX2UKGgGR0BvIndfsu3+aAdNQAFoCEdAohXRC2MKkXV9lChoBkdAbP6Hoouwo2gHTVUBaAhHQKIWMbo8p1B1fZQoaAZHQG9OgzP8hs9oB01jAWgIR0CiF4SU1Q67dX2UKGgGR0Bid0SM98qnaAdN6ANoCEdAohgAR7JGOXV9lChoBkdAcRd3VTaTOmgHTYABaAhHQKIZCam4y451fZQoaAZHwBUVbu+h4+toB00zAWgIR0CiGRxZuAI6dX2UKGgGR0A2yzfJmuklaAdLz2gIR0CiGeKjJuEVdX2UKGgGR0BsHQrhBJI2aAdNTwFoCEdAohoPAKv3anV9lChoBkdAcCZBnBciW2gHTUUBaAhHQKIbD8VpKz11fZQoaAZHQG+KQztTkyVoB00lAWgIR0CiGyerELpidX2UKGgGR0Bfw5XuE25yaAdN6ANoCEdAohx1qJuVHHV9lChoBkfAJCv7el9Br2gHTR8BaAhHQKIcdeUILPV1fZQoaAZHQGq7g6+36RBoB01OAWgIR0CiHed0A93bdX2UKGgGR0BwVkkJKJ2uaAdNkANoCEdAoh4LB/I8yXV9lChoBkdAW9Zr/Khcq2gHTegDaAhHQKIePctXgcd1fZQoaAZHQGw1Ow5eZ5RoB00sAWgIR0CiHmrP+n63dX2UKGgGRz+2xOclPacqaAdNKAFoCEdAoh7BAyEcsHV9lChoBkdAKg4eLehwl2gHTR8BaAhHQKIfn4qwyIp1fZQoaAZHQHCnOzY287JoB00qAWgIR0CiIOjbBXS0dX2UKGgGR8A5ONMoMKCyaAdNGQFoCEdAoiHKlk6LfnV9lChoBkfARMGZw4sEq2gHTRYBaAhHQKIh0uaF23d1fZQoaAZHQGtCX++/QBxoB01kAWgIR0CiIoZIQOFydX2UKGgGR0BsCxtNzr/saAdNPwFoCEdAoiTr9S/CZXV9lChoBkdAX+WTPjXFtWgHTegDaAhHQKImNq7Ackt1fZQoaAZHQGfGAc1fmcRoB02AAWgIR0CiJ1aFmFrVdX2UKGgGR0Bwg9kDp1RtaAdNPQFoCEdAoidhdpqREHV9lChoBkdAbslzYEnss2gHTUQBaAhHQKInaQI2OyV1fZQoaAZHQG5JCYkVvddoB01WAWgIR0CiKLuP/7zkdX2UKGgGR0BoM0FEAo5QaAdNgwFoCEdAoimx+nZTQ3V9lChoBkdAYHWxM36yjmgHTegDaAhHQKIqIr5IpYt1fZQoaAZHQG0/7iqABktoB02LAmgIR0CiKqtEPUaydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c15911ae87c65526d59f0278be30c1973aae1fb1b4309cc1a1ef577ef77fcdf3
3
+ size 148051
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae6b04f16c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae6b04f1750>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae6b04f17e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae6b04f1870>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ae6b04f1900>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ae6b04f1990>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae6b04f1a20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae6b04f1ab0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ae6b04f1b40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae6b04f1bd0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae6b04f1c60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae6b04f1cf0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ae6b0483d00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701153061193367819,
30
+ "learning_rate": 0.0001,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3B3LxGF4g/aNv+u6OOjr5YZxO7qq8APQAAAAAAAAAAwBuqPhQP17za5je5/0CRN0tgAb6LWFk4AACAPwAAgD8z/1S8iN//Pqpo4r3PUo++xXaNu+rDALwAAAAAAAAAACCwL74FGMM8kNPRPCn/iru4RFO+9r+VPAAAAAAAAAAAU2klvqFInz53nAQ9QZMpvtfyt7sdj008AAAAAAAAAABmdq06ksfTPDkXor1dNhu+g3DCu2Mudz0AAAAAAAAAAC37L777coy8aUIrvA2+qroAafA9epaIOwAAgD8AAIA/M4JYvasyqz9yKw6/2WPRvouLbLt4UBC+AAAAAAAAAAAA/jw8INE/P+An2z1aY4a+nJW7Pd1RjzsAAAAAAAAAAHAvhb6fsj8/Ou5dvRYggL6XSly9AF3XPAAAAAAAAAAArT4zPsAsjT+vOAQ/LMK1vrv4Tz7sxQg+AAAAAAAAAABq7us+nUCAP82fcD4nubG+vr9GPsOpVzwAAAAAAAAAAI3Af75PsyM9eSFDunJJBTl6p76+VQH1NwAAAAAAAAAAjbUvPmHBprzAbra5Vu0+OIhhEr6wk/04AACAPwAAgD+AD0y+YxktP67VOjxBTX++iD2PvBDhv70AAAAAAAAAAID2pL1pMBC8hsPDvC7HtDwXRoy91qeUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0KvVurIYGMAWyUTUABjAF0lEdAoa/TfFaStHV9lChoBkfAJH9q1w5vL2gHTRYBaAhHQKGv1Ex7AtZ1fZQoaAZHQHAxXEIgNgBoB01EAWgIR0ChsJU8vEjxdX2UKGgGR0BpVEqFyq+8aAdNvAFoCEdAobFbPhQ3xXV9lChoBkdAaqOWdmQKbGgHTWQBaAhHQKGxwKAJ9iN1fZQoaAZHQFvCkZrHlwNoB03oA2gIR0Chs7mMOwxGdX2UKGgGR0AlyRXfZVXFaAdNAgFoCEdAobQxEx7AtXV9lChoBkdAYEfLpRoAXGgHTegDaAhHQKG2ZTKkl/p1fZQoaAZHQG4co5PuXu5oB00zAWgIR0Chtx2D6FdtdX2UKGgGR0Bv9K++M6zWaAdNQAFoCEdAobgf4bjtHHV9lChoBkdAXyIzEaVD8mgHTegDaAhHQKG5d3N9ph51fZQoaAZHQGm2Sy+pOvdoB022AWgIR0Chuio7Njb0dX2UKGgGR0BsBu/gzguRaAdNVgFoCEdAobrIaDPGAHV9lChoBkdAbQ441gpjMGgHTT8BaAhHQKG6+3rleWx1fZQoaAZHQFsEE2Hck+poB03oA2gIR0Chuxj+rELqdX2UKGgGR0BtdKzLOiWWaAdNmAFoCEdAobt+FzuF6HV9lChoBkdAbax+0gKWs2gHTUYBaAhHQKG71HEuQIV1fZQoaAZHQBQVJlJ6IFhoB00/AWgIR0ChvAUfozN2dX2UKGgGR0ASF+2E0zj4aAdL/GgIR0Chvbzw+dK/dX2UKGgGR0BieJ1JUYKqaAdN6ANoCEdAob3z5/LDAXV9lChoBkdAajzxeb/ff2gHTZcBaAhHQKG/sgdwNsp1fZQoaAZHQGxMrO7g88toB01GAWgIR0ChwN65Xlr/dX2UKGgGR0AuHbMX7+DOaAdNCgFoCEdAocEZOFg2InV9lChoBkdAbrXZjhDPW2gHTVEBaAhHQKHCv6iTMaF1fZQoaAZHQG91keQuEmJoB006AWgIR0ChwvLVWjoIdX2UKGgGR0BtaCh8IAwPaAdNSQFoCEdAocM7WmP5pXV9lChoBkdAab5Xr+o992gHTVIBaAhHQKHcesSTQmh1fZQoaAZHQG+t7u+h4+toB01pAWgIR0Ch3W3evZAZdX2UKGgGR0BsuBpWV/tqaAdNLwFoCEdAod5TVQQ+U3V9lChoBkdAbQtZMcp9Z2gHTXYBaAhHQKHgE28Zk091fZQoaAZHQGxMQ9q1w5xoB01NAWgIR0Ch4S9JBgNPdX2UKGgGR0BtdEZpBX0YaAdNPwFoCEdAoeJAtnPE9HV9lChoBkdAYdeUr08NhGgHTegDaAhHQKHizIK+i8F1fZQoaAZHQGxXyc9W6shoB01oAWgIR0Ch40PDYRNAdX2UKGgGR0Bob5gE2YOUaAdNnAJoCEdAoeO80Jng53V9lChoBkdAbtfExZdOZmgHTTwBaAhHQKHj+DEm6Xl1fZQoaAZHQGgw1RtP559oB00+AWgIR0Ch5EIZhrnDdX2UKGgGR0BbtSN0eU6gaAdN6ANoCEdAoeRTXJ5miHV9lChoBkdAbc5xLkCFK2gHTTcBaAhHQKHlJk078vV1fZQoaAZHQFpgxLkCFK1oB03oA2gIR0Ch6HXqAz55dX2UKGgGR0BrmXjp9qk/aAdNqgFoCEdAoekKzw+dLHV9lChoBkdAbHBxeb/ff2gHTXoBaAhHQKHqw3GXHBF1fZQoaAZHQGFekcsDnvFoB03oA2gIR0Ch61PRZ2ZBdX2UKGgGR0BsM/jsD4gzaAdNcQFoCEdAoevjoW56MXV9lChoBkdAcHz/lhgE2mgHTTEBaAhHQKHsBNdqtYB1fZQoaAZHQHBKgxBVuJloB01bAWgIR0Ch7Og4XGfgdX2UKGgGR0BthgYk3S8baAdNOQFoCEdAoe0iVfNRnHV9lChoBkdAbG6uxrzoU2gHTXkBaAhHQKHtUb9ZRsN1fZQoaAZHQGyPbTDwYtRoB01OAWgIR0Ch7X/gBLf2dX2UKGgGR0Bs5pA2Q4jsaAdNYAFoCEdAoe6f0/W1+nV9lChoBkdAZFjK1XvH92gHTegDaAhHQKHvS/iYLLJ1fZQoaAZHQGvWQA2hqTNoB02FAWgIR0Ch77y+pOvddX2UKGgGR0Bw4oUypJf6aAdNLAFoCEdAofIDlJYkmnV9lChoBkdAcEoFspG4JGgHTWsBaAhHQKH0Ln13+uN1fZQoaAZHQG8XH4XXRPZoB01CAWgIR0Ch9LZvDP4VdX2UKGgGR0Bq4R7AtWdVaAdNRQFoCEdAofU6eI2wV3V9lChoBkdAbKA87IT4+WgHTWMBaAhHQKH2LQAuIyl1fZQoaAZHQG8HlJg9eQdoB01CAWgIR0Ch9lpFb3XadX2UKGgGR0BsJtHOKO1faAdNVgFoCEdAofaPoouwo3V9lChoBkdAWwyQ8wHqvGgHTegDaAhHQKH3SB19v0h1fZQoaAZHQGvMrQw9JSRoB01fAWgIR0Ch+CRGlQ/HdX2UKGgGR0Bs9vdTHbRGaAdNSAFoCEdAofgqcLBsRHV9lChoBkdAckLxG2Cul2gHTaABaAhHQKH4cixFAml1fZQoaAZHQG3f+irT6SFoB006AWgIR0CiEdWrfcesdX2UKGgGR0BefM8s+V1PaAdN6ANoCEdAohIhhc7henV9lChoBkfALdOLBKtga2gHTRYBaAhHQKITZ531SO11fZQoaAZHwBYZsfq5byJoB0v6aAhHQKIUQqkM1CR1fZQoaAZHQHBSmWdEsrdoB01oAWgIR0CiFPEBKcurdX2UKGgGR8AzDtKqXF98aAdL1mgIR0CiFQh0ZFXrdX2UKGgGR0BvIndfsu3+aAdNQAFoCEdAohXRC2MKkXV9lChoBkdAbP6Hoouwo2gHTVUBaAhHQKIWMbo8p1B1fZQoaAZHQG9OgzP8hs9oB01jAWgIR0CiF4SU1Q67dX2UKGgGR0Bid0SM98qnaAdN6ANoCEdAohgAR7JGOXV9lChoBkdAcRd3VTaTOmgHTYABaAhHQKIZCam4y451fZQoaAZHwBUVbu+h4+toB00zAWgIR0CiGRxZuAI6dX2UKGgGR0A2yzfJmuklaAdLz2gIR0CiGeKjJuEVdX2UKGgGR0BsHQrhBJI2aAdNTwFoCEdAohoPAKv3anV9lChoBkdAcCZBnBciW2gHTUUBaAhHQKIbD8VpKz11fZQoaAZHQG+KQztTkyVoB00lAWgIR0CiGyerELpidX2UKGgGR0Bfw5XuE25yaAdN6ANoCEdAohx1qJuVHHV9lChoBkfAJCv7el9Br2gHTR8BaAhHQKIcdeUILPV1fZQoaAZHQGq7g6+36RBoB01OAWgIR0CiHed0A93bdX2UKGgGR0BwVkkJKJ2uaAdNkANoCEdAoh4LB/I8yXV9lChoBkdAW9Zr/Khcq2gHTegDaAhHQKIePctXgcd1fZQoaAZHQGw1Ow5eZ5RoB00sAWgIR0CiHmrP+n63dX2UKGgGRz+2xOclPacqaAdNKAFoCEdAoh7BAyEcsHV9lChoBkdAKg4eLehwl2gHTR8BaAhHQKIfn4qwyIp1fZQoaAZHQHCnOzY287JoB00qAWgIR0CiIOjbBXS0dX2UKGgGR8A5ONMoMKCyaAdNGQFoCEdAoiHKlk6LfnV9lChoBkfARMGZw4sEq2gHTRYBaAhHQKIh0uaF23d1fZQoaAZHQGtCX++/QBxoB01kAWgIR0CiIoZIQOFydX2UKGgGR0BsCxtNzr/saAdNPwFoCEdAoiTr9S/CZXV9lChoBkdAX+WTPjXFtWgHTegDaAhHQKImNq7Ackt1fZQoaAZHQGfGAc1fmcRoB02AAWgIR0CiJ1aFmFrVdX2UKGgGR0Bwg9kDp1RtaAdNPQFoCEdAoidhdpqREHV9lChoBkdAbslzYEnss2gHTUQBaAhHQKInaQI2OyV1fZQoaAZHQG5JCYkVvddoB01WAWgIR0CiKLuP/7zkdX2UKGgGR0BoM0FEAo5QaAdNgwFoCEdAoimx+nZTQ3V9lChoBkdAYHWxM36yjmgHTegDaAhHQKIqIr5IpYt1fZQoaAZHQG0/7iqABktoB02LAmgIR0CiKqtEPUaydWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 620,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8111afd0468fd2b1ac93c587eabfb76273a48f5fe9019c9dbcf4a40dced27ae1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad6227afcc3b2b8aaa44728d66f40188baa40577bd5f666e6b38ec06fb9011b2
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 178.7543855, "std_reward": 94.69501900376278, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-28T07:07:15.374416"}