{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b77ae7cd990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b77ae7cda20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b77ae7cdab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b77ae7cdb40>", "_build": "<function ActorCriticPolicy._build at 0x7b77ae7cdbd0>", "forward": "<function ActorCriticPolicy.forward at 0x7b77ae7cdc60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b77ae7cdcf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b77ae7cdd80>", "_predict": "<function ActorCriticPolicy._predict at 0x7b77ae7cde10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b77ae7cdea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b77ae7cdf30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b77ae7cdfc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b77ae965680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701166901667106243, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN4272ZeKk/QA4mv0f81b6J0oq9YCepvgAAAAAAAAAAMxyTvWwprD6YvJg+Z8GfvrvGeD34TkU9AAAAAAAAAADNAaQ9DeVYP9jHDz6wDa2+Uu6ZPZJiWrwAAAAAAAAAAE22UD6dzBk/Cy+APBxmu77IovM9P+8VvQAAAAAAAAAA42SuPtuLKj87TmC+PVyhvnGNVD3w5ZO9AAAAAAAAAADtIUM+EqCTPmrif76hdYa+f6IrvM7+bzwAAAAAAAAAACo0X75+E5k/DOkAvwQXub7qG4q+UtoyvgAAAAAAAAAAAG1JPbgC8zoXXDU+POtAvnZLwDw6RTG/AAAAAAAAgD/NwSo+BdioP5LR8z6N2q++8s05PnJdtT0AAAAAAAAAALNoDj1C2IM/vi/jO2/Ftr4yHmc9VyoXuwAAAAAAAAAAALRDPZ9A2bv64h+8+3qGPDQ4J731mmM9AACAPwAAgD/gJU0+C1NCPworvD13soS+nhn5PTS2ArwAAAAAAAAAAAAz7jw2050/KvgEPpzf5r6oWAg8sw7eOwAAAAAAAAAAJh8AvpRnzztCVIo+sSSyvlNkRD03OTu9AAAAAAAAAAAmipy9+zCkvHb+ejyxzuq8qnncPXvhcT4AAIA/AACAP2M+mD57uXU/UuOBPl42kr4D85M+D6ewvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAURyjpLVaMAWyUTWcBjAF0lEdAk28qQFLWZ3V9lChoBkdAcWvnhbW3B2gHTVEBaAhHQJNvPlijL0V1fZQoaAZHQG/fLx7RfF9oB00/AWgIR0CTb+NtqHoHdX2UKGgGR0Bx3q8Zk079aAdNWgFoCEdAk3ABUWEbpHV9lChoBkdAcfSfdyksSWgHTa4CaAhHQJNwJDArQPZ1fZQoaAZHQHI62ys0YTFoB01JAWgIR0CTcWV2zOX3dX2UKGgGR0BzDEOskpqiaAdNJgFoCEdAk3GY1UEPlXV9lChoBkdAbZAbayrxRWgHTRABaAhHQJNyvdGiHqN1fZQoaAZHQHJRtU83dbhoB026AmgIR0CTc1hxo7FLdX2UKGgGR0Bx6bR8c+7laAdNRAFoCEdAk3QsoUi6hHV9lChoBkdAb+9/jsD4g2gHTR4BaAhHQJN0NtIkJKJ1fZQoaAZHQHMfap97WupoB01OAWgIR0CTdHoF3Y+TdX2UKGgGR0BvamVJL/S6aAdNNQFoCEdAk3SbaqS5iHV9lChoBkdAcn7aXrt3OmgHTT4BaAhHQJN2tuKoAGV1fZQoaAZHQGvokIomXw9oB00gAWgIR0CTdspQ1rIpdX2UKGgGR0Bt36yv9tMxaAdNFwFoCEdAk3kVNg0CR3V9lChoBkdAb1rwkxASnWgHTTIBaAhHQJN5QJv5xip1fZQoaAZHQHOH+y/sVtZoB00xAWgIR0CTeklwcYIjdX2UKGgGR0BuQGJgssg/aAdNRQFoCEdAk3qxxo7FKnV9lChoBkdAcLVkgwGnoGgHTXABaAhHQJN7FX3g1m91fZQoaAZHQHAe0puuRtBoB01pAWgIR0CTezsjVx0ddX2UKGgGR0Bs8J0GNaQnaAdNIQFoCEdAk3t6whW5pnV9lChoBkdAc6dBmf5DZ2gHTSoBaAhHQJN7jrzGxUx1fZQoaAZHQHE0WrXDm8xoB00jAWgIR0CTfTZm7J4jdX2UKGgGR0By3y4/eLvUaAdNIgFoCEdAk34H8fmtAHV9lChoBkdAcYfPi1iON2gHTU8BaAhHQJN+Ep1A7gd1fZQoaAZHQEkjFdcB2fVoB0vVaAhHQJN+K8CgbqB1fZQoaAZHQG0do1+AmRhoB00nAWgIR0CTfjdAgPmQdX2UKGgGR0Br2SEpRXOoaAdNcAFoCEdAk4DJ+QU5/HV9lChoBkdAckhua4MF2WgHTVQBaAhHQJOCL+4smOV1fZQoaAZHQHC3UL2HtWxoB00tAWgIR0CTgzA93bEhdX2UKGgGR0BykRhhH9WIaAdNPQFoCEdAk4P+ndfsu3V9lChoBkdAcBtgxagVXWgHTTUBaAhHQJOEwNy5qdp1fZQoaAZHQG15wYDTz/ZoB001AWgIR0CThdf9gnc+dX2UKGgGR0BFcBNucc2jaAdL2WgIR0CThf2i+L3sdX2UKGgGR0Bw596yB06paAdNNgFoCEdAk4Y+sLfDUHV9lChoBkdAcMd/o7muDGgHTQgBaAhHQJOGrSPU8V51fZQoaAZHQHFYHcHnln1oB01LAWgIR0CThyBHCoCNdX2UKGgGR0Btvv7xd6cBaAdNWwFoCEdAk4cxUrCm/HV9lChoBkdAcTXOGj9GZ2gHTSoBaAhHQJOI6Ei+tbN1fZQoaAZHQG7riOearm1oB003AWgIR0CTiZ4G2TgVdX2UKGgGR0BuAAwK0D2baAdNRgFoCEdAk4qCxZ+x4nV9lChoBkdAb3EIgNgBtGgHTSYBaAhHQJONDIHTqjd1fZQoaAZHQG/YqFIuoP1oB006AWgIR0CTj/JK8L8adX2UKGgGR0BwudSXMQmNaAdNMwFoCEdAk6KHpGFzuHV9lChoBkdAb//qqwQlKWgHTS4BaAhHQJOjHvuw5eZ1fZQoaAZHQEyj4eLehwloB0v1aAhHQJOjcp/gBLh1fZQoaAZHQEZxN4Z/CqJoB0vraAhHQJOjmsCDEm91fZQoaAZHQDWFZU1hsqJoB00OAWgIR0CTo/YZ2pyZdX2UKGgGR0BxzSWqtHQQaAdNIAFoCEdAk6RDewcHW3V9lChoBkdAb0RMoMKCx2gHTXYCaAhHQJOk3WiDdxh1fZQoaAZHQHC1+UpuuRtoB01VAWgIR0CTpSaTwDvFdX2UKGgGR0BwEy7pV0cPaAdNbAFoCEdAk6bswUQCjnV9lChoBkdAb25INmUW22gHTWMBaAhHQJOnrcqOLix1fZQoaAZHQHA305uIhyNoB01DAWgIR0CTqDdn003wdX2UKGgGR0BtSWbVjI7vaAdNVAFoCEdAk6k6zE74jHV9lChoBkdAcO5fJV81GmgHTUsBaAhHQJOphsHjZL91fZQoaAZHQHEKc8xKxs5oB01CAWgIR0CTqymZE2HddX2UKGgGR0Bv8E74i5d4aAdNEQFoCEdAk6uFlkH2RXV9lChoBkdAZb3rNW2gF2gHTegDaAhHQJOrqfHxSYR1fZQoaAZHQE3MlhPTG5toB0viaAhHQJOr2A/cFhZ1fZQoaAZHQHIAXyEtdzJoB00ZAWgIR0CTrGSxJNCadX2UKGgGR0Bsr98gIQe4aAdNAwFoCEdAk6yJWaMJhXV9lChoBkdAbTk5yU9py2gHTRkBaAhHQJOs2cslLOB1fZQoaAZHQG5R+b/ffoBoB00RAWgIR0CTrNhY/3WXdX2UKGgGR0Bv9RDkU9IPaAdNKAFoCEdAk64bKzRhMXV9lChoBkdAS3AuXeFcp2gHS+poCEdAk66V8PWhAXV9lChoBkdAch1St/4Ir2gHTSUBaAhHQJOuyP2f0291fZQoaAZHQHHhKlHjIaNoB00SAWgIR0CTsEjGDL8rdX2UKGgGR0BsQ/TLGJemaAdNJQFoCEdAk7KHSro4dnV9lChoBkdAOCc0cfeUIWgHS+FoCEdAk7K7GvOhTXV9lChoBkdAbmkxrzoUz2gHTSgBaAhHQJOzAB6rvLJ1fZQoaAZHQHDTBshxHXpoB01PAWgIR0CTsvfhMrVfdX2UKGgGR0BvMxvP1L8KaAdNOQFoCEdAk7VRpxm03XV9lChoBkdAcO/b1yvLYGgHTfsBaAhHQJO11eyAxzt1fZQoaAZHQHFzC5NGmUJoB005AWgIR0CTtdPMSsbOdX2UKGgGR0Bwu2VC5VfeaAdNNgFoCEdAk7bR3NcGDHV9lChoBkdAblQ8NhE0BWgHTT4BaAhHQJO27101ZT11fZQoaAZHQHH8gg1WKdhoB01EAWgIR0CTt6kfLcKxdX2UKGgGR0By1jOE/SpjaAdNSQFoCEdAk7fZha1Ti3V9lChoBkdAcF69i+cpb2gHTSQBaAhHQJO4JKVY6n11fZQoaAZHQHHNgLApKBdoB00pAWgIR0CTuRGQ0XP7dX2UKGgGR0BwikNlRP43aAdNMwFoCEdAk7kpq/M4cXV9lChoBkdAcFGZgG8mKWgHTTIBaAhHQJO7DKkl/pd1fZQoaAZHQHFWSrxRVIZoB00MAWgIR0CTvAxJNCZ4dX2UKGgGR0Byqu7nPmgbaAdNJwFoCEdAk7zRF3IMjXV9lChoBkdAcYob8WKuS2gHTRgCaAhHQJO9RutOmBR1fZQoaAZHQHAvorSVnmJoB01AAWgIR0CTvhr0rbxmdX2UKGgGR0BtzLUkOZssaAdNEwFoCEdAk77jTa0x/XV9lChoBkdAb9AHnEETx2gHTWMBaAhHQJO/uOXE61d1fZQoaAZHQHETPetSydFoB00QAWgIR0CTwjlbeMyadX2UKGgGR0BwdCUxEfDDaAdNVwFoCEdAk8M5J9RaYHV9lChoBkdAcdFDwH7gsWgHTSUBaAhHQJPD7LbHp8p1fZQoaAZHQHMWYOtnwodoB01YAWgIR0CTxLQz1scidX2UKGgGR0BwUD27FsHjaAdNiAFoCEdAk8Wwswtap3V9lChoBkdAcpxpy6tknWgHTTEBaAhHQJPGELofSx91fZQoaAZHQG6f3kgfU4JoB01BAWgIR0CTxrZB9kSVdX2UKGgGR0Bx7379AHE/aAdNhQFoCEdAk8bCtV7x/nV9lChoBkdAbxeRJVbRnmgHTXoBaAhHQJPHUMZxaPl1fZQoaAZHQHFNyAhB7eFoB00XAWgIR0CTx5HmA9V4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |