segformer-b0-scene-parse-150

This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0909
  • Mean Iou: 0.0764
  • Mean Accuracy: 0.1491
  • Overall Accuracy: 0.5291
  • Per Category Iou: [0.5034928926015272, 0.44091153144031786, 0.8562368923977697, 0.3012357014422893, 0.6023525294256389, 0.36697224521256766, 0.41496534578876, 0.015753488807717524, 0.0721393705671368, 0.0, 0.016771223312759282, 0.0038939013635438573, 0.07156951734480445, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 4.8551938436142065e-05, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
  • Per Category Accuracy: [0.8095882286941608, 0.8912099769923908, 0.9700921240430778, 0.6828963686981258, 0.8790060677388374, 0.5985387920818607, 0.9266810367488565, 0.02175656448066227, 0.07699614299694894, 0.0, 0.025297619047619048, 0.003950012386798426, 0.0789404953641231, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 4.8551938436142065e-05, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
4.6554 1.0 20 4.0452 0.0314 0.1018 0.4056 [0.3802351674925874, 0.3714031619866809, 0.6658173884134979, 0.08236548670514872, 0.5195079492397522, 0.32600300982997665, 0.16760328763111168, 0.0, 0.009349324351346187, 0.010556515398880946, 0.02729044834307992, 0.008162535263940944, 0.0365415504269169, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0009112684857321391, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0006428085790221893, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0] [0.7066758563208257, 0.6630098417994307, 0.966369858570131, 0.09244338828998379, 0.8233860536381451, 0.5245818863802644, 0.19254508175174806, 0.0, 0.010093450770441157, 0.010744708311822405, 0.030181623931623932, 0.013818161799113656, 0.037631132198668, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0009604302727621974, nan, 0.0, nan, nan, nan, nan, nan, 0.0006428403654300231, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
4.5013 2.0 40 3.7377 0.0482 0.1178 0.4521 [0.42177802406586445, 0.3965055789129045, 0.8161668440614681, 0.12434048046699596, 0.5836650740581916, 0.29336533048240254, 0.28243737977537386, 0.0, 0.010022903213043841, 0.0020221319958602024, 0.07225255305388861, 0.018342697994874323, 0.059270144501591966, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0020203652820429932, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0] [0.8539806696693327, 0.7097258311576362, 0.9731859024263656, 0.15369938336383268, 0.8538191225372364, 0.5315993940830354, 0.43073445139582567, 0.0, 0.01093776984629555, 0.0020489158492514197, 0.09165140415140414, 0.03634837182416251, 0.06320463152396291, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0020580648702047087, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
4.0781 3.0 60 3.4677 0.0622 0.1323 0.4918 [0.4565486809272134, 0.4146850579055867, 0.7815920842389417, 0.3013982890325061, 0.5605142401543952, 0.40480229234106685, 0.4013458417448442, 0.007603048803610026, 0.0545143046791258, 0.009523809523809525, 0.02667518837459634, 0.01131414309209167, 0.05058781617385109, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.7900431165750372, 0.8439296500486819, 0.9579846243674581, 0.4623036694621996, 0.9093447619259103, 0.6172418412456334, 0.5330529414857264, 0.010373819686974518, 0.05831078617619404, 0.009550851832731027, 0.030257936507936508, 0.018841696716122108, 0.052539938188308016, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
4.0537 4.0 80 3.3264 0.0719 0.1427 0.5117 [0.5190851451600482, 0.40915590372322613, 0.823462532656926, 0.25596459030551655, 0.570668828075564, 0.4128496282711589, 0.3916929623599364, 0.01886076202273681, 0.06771173426882045, 0.0, 0.0067230955259975815, 0.004991789819376026, 0.036359823862444955, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007208743508255174, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.7779063616983763, 0.8713000229455942, 0.9661955040871935, 0.41126423423501557, 0.8911637512282591, 0.7748008614737797, 0.8575153777403922, 0.02442116155736645, 0.07213171377583329, 0.0, 0.00795558608058608, 0.006275977868920146, 0.037739955600052236, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.007656001317161517, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
4.0016 5.0 100 3.2525 0.0719 0.1392 0.5003 [0.472170183162786, 0.42451684133871614, 0.7730973930009949, 0.33605290424128503, 0.5370798471096634, 0.3541503672109633, 0.39031328793622844, 0.024697083888921098, 0.08923000017237516, 0.0, 0.0500039696191812, 0.03976185903591319, 0.03367538661656309, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.00010927767457108513, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.8006860183686226, 0.7844943597249009, 0.9736035422343324, 0.5147654440907868, 0.9079846557821165, 0.578403388188741, 0.6852531412649178, 0.04408226620100893, 0.0993322203672788, 0.0, 0.07209630647130646, 0.07123785405598833, 0.03549819353153702, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.00010976345974425115, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
3.6007 6.0 120 3.1663 0.0750 0.1491 0.5181 [0.46653700694286915, 0.43496393014086027, 0.8533419787877601, 0.3296338990810687, 0.5640469731803408, 0.359255932254711, 0.452931202739024, 0.015254389375766458, 0.02207564827626353, 0.0, 0.046163257176999456, 0.02098489449404954, 0.031880312544166046, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0014078011602223356, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0038615288390939006, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.8043469201301512, 0.8007454217338187, 0.9712031270273777, 0.6993660182302281, 0.9084565293422082, 0.733571715631215, 0.873539771831134, 0.026387272021730693, 0.023650528658875906, 0.0, 0.061908577533577536, 0.022351289603347188, 0.03436643015714099, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0014080062146481199, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0038966028209209153, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
2.9546 7.0 140 3.1639 0.0767 0.1493 0.5234 [0.4760379475670713, 0.4400264131405374, 0.8731758433679566, 0.2770289254976191, 0.601418477699526, 0.4150693293799599, 0.4224265914729532, 0.005800731683200949, 0.053498071435291165, 0.0, 0.025523102918196486, 0.02362555531511348, 0.06615541717558016, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.00016993178452649722, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.7479844203305069, 0.9091571525137828, 0.9629314259763851, 0.6498790144228684, 0.8727717852919787, 0.7356944859495276, 0.891561957836076, 0.0091061958349502, 0.05728896820371117, 0.0, 0.038327991452991456, 0.02554433097525393, 0.07191050363470161, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.00016993178452649722, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
3.5928 8.0 160 3.1424 0.0788 0.1490 0.5328 [0.4892980391009987, 0.4579737454672135, 0.8657427615306271, 0.3280185204515292, 0.6047578135441128, 0.3264040023355804, 0.4615695792880259, 0.0019410078728730545, 0.04321579842884553, 0.0007735946364105209, 0.048436850786296164, 0.02107910498068397, 0.05287785676989196, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.8581416595874273, 0.8967851362162095, 0.9650723368366421, 0.7631111072565328, 0.8792225744311147, 0.5069196129550818, 0.8877976972819516, 0.002768076574828612, 0.04581390440005373, 0.0007743933918430562, 0.07339362026862027, 0.022378815822070523, 0.057306403168937446, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
3.1927 9.0 180 3.1218 0.0771 0.1481 0.5203 [0.48073081291850317, 0.43663033813635715, 0.8031272424870397, 0.30377651014062906, 0.5947293394412313, 0.36659565040576386, 0.3965167184823298, 0.020950576698055386, 0.10223961884857555, 0.0, 0.014646924268883588, 0.011638652648496619, 0.09068434870930032, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.7367003798746574, 0.8816317418186553, 0.9711423056961204, 0.6253523325498903, 0.8893817346072069, 0.6223735869666024, 0.919962147100573, 0.029181218471090415, 0.11076890603112467, 0.0, 0.022722069597069596, 0.011960142035288612, 0.10299046707003874, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
2.9944 10.0 200 3.0909 0.0764 0.1491 0.5291 [0.5034928926015272, 0.44091153144031786, 0.8562368923977697, 0.3012357014422893, 0.6023525294256389, 0.36697224521256766, 0.41496534578876, 0.015753488807717524, 0.0721393705671368, 0.0, 0.016771223312759282, 0.0038939013635438573, 0.07156951734480445, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 4.8551938436142065e-05, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] [0.8095882286941608, 0.8912099769923908, 0.9700921240430778, 0.6828963686981258, 0.8790060677388374, 0.5985387920818607, 0.9266810367488565, 0.02175656448066227, 0.07699614299694894, 0.0, 0.025297619047619048, 0.003950012386798426, 0.0789404953641231, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 4.8551938436142065e-05, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
3.75M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Elistepx/segformer-b0-scene-parse-150

Base model

nvidia/mit-b0
Finetuned
(385)
this model

Dataset used to train Elistepx/segformer-b0-scene-parse-150