See axolotl config
axolotl version: 0.6.0
base_model: unsloth_phi-4
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
#hub_model_id: NewEden/Phi4-pretrain
#hub_strategy: "all_checkpoints"
#push_dataset_to_hub:
#hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
#plugins:
# - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#cut_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Mielikki/Erebus-87k
type: completion
field: body
- path: NewEden/Orion-Asstr-Stories-16K
type: completion
field: content
shuffle_merged_datasets: true
dataset_prepared_path: prepared_data
val_set_size: 0.0
output_dir: ./phi4-pt-out-r1
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: mag-phi
wandb_entity:
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_ademamix_8bit
lr_scheduler: constant_with_warmup
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 4
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.01
fsdp:
fsdp_config:
phi4-pt-out-r1
This model was trained from scratch on the Mielikki/Erebus-87k and the NewEden/Orion-Asstr-Stories-16K datasets.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.