anton-l's picture
anton-l HF staff
Upload README.md
255273d
metadata
language:
  - pa-IN
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - pa-IN
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-xls-r-300m-pa-IN-r5
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: pa-IN
        metrics:
          - name: Test WER
            type: wer
            value: 0.4186593492747942
          - name: Test CER
            type: cer
            value: 0.13301322550753938
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: pa-IN
        metrics:
          - name: Test WER
            type: wer
            value: NA
          - name: Test CER
            type: cer
            value: NA

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8881
  • Wer: 0.4175

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Punjabi language isn't available in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000111
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 200.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
10.695 18.52 500 3.5681 1.0
3.2718 37.04 1000 2.3081 0.9643
0.8727 55.56 1500 0.7227 0.5147
0.3349 74.07 2000 0.7498 0.4959
0.2134 92.59 2500 0.7779 0.4720
0.1445 111.11 3000 0.8120 0.4594
0.1057 129.63 3500 0.8225 0.4610
0.0826 148.15 4000 0.8307 0.4351
0.0639 166.67 4500 0.8967 0.4316
0.0528 185.19 5000 0.8875 0.4238

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0