DrGwin's picture
Add SetFit model
27b6087 verified
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'for this reason and this reason only -- the power of its own steadfast ,
hoity-toity convictions -- chelsea walls deserves a medal . '
- text: 'aside from minor tinkering , this is the same movie you probably loved in
1994 , except that it looks even better . '
- text: 'cq ''s reflection of artists and the love of cinema-and-self suggests nothing
less than a new voice that deserves to be considered as a possible successor to
the best european directors . '
- text: 'i had to look away - this was god awful . '
- text: 'i ''ll bet the video game is a lot more fun than the film . '
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.89
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------|
| positive | <ul><li>'klein , charming in comedies like american pie and dead-on in election , '</li><li>'be fruitful '</li><li>'soulful and '</li></ul> |
| negative | <ul><li>'covered earlier and much better '</li><li>'it too is a bomb . '</li><li>'guilty about it '</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.89 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("DrGwin/setfit-paraphrase-mpnet-base-v2-sst2A")
# Run inference
preds = model("i had to look away - this was god awful . ")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 9.55 | 46 |
| Label | Training Sample Count |
|:---------|:----------------------|
| negative | 40 |
| positive | 60 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0030 | 1 | 0.4181 | - |
| 0.1506 | 50 | 0.2514 | - |
| 0.3012 | 100 | 0.0932 | - |
| 0.4518 | 150 | 0.0029 | - |
| 0.6024 | 200 | 0.001 | - |
| 0.7530 | 250 | 0.0006 | - |
| 0.9036 | 300 | 0.0006 | - |
| 1.0 | 332 | - | 0.1722 |
| 1.0542 | 350 | 0.0014 | - |
| 1.2048 | 400 | 0.0004 | - |
| 1.3554 | 450 | 0.0004 | - |
| 1.5060 | 500 | 0.0095 | - |
| 1.6566 | 550 | 0.0003 | - |
| 1.8072 | 600 | 0.0003 | - |
| 1.9578 | 650 | 0.0003 | - |
| 2.0 | 664 | - | 0.1820 |
| 2.1084 | 700 | 0.0003 | - |
| 2.2590 | 750 | 0.0023 | - |
| 2.4096 | 800 | 0.0003 | - |
| 2.5602 | 850 | 0.0002 | - |
| 2.7108 | 900 | 0.0002 | - |
| 2.8614 | 950 | 0.0002 | - |
| 3.0 | 996 | - | 0.1970 |
| 3.0120 | 1000 | 0.0002 | - |
| 3.1627 | 1050 | 0.0003 | - |
| 3.3133 | 1100 | 0.0012 | - |
| 3.4639 | 1150 | 0.0002 | - |
| 3.6145 | 1200 | 0.0002 | - |
| 3.7651 | 1250 | 0.0003 | - |
| 3.9157 | 1300 | 0.001 | - |
| 4.0 | 1328 | - | 0.1810 |
### Framework Versions
- Python: 3.11.11
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->