Upload Create_mel_vocab.ipynb
Browse files- Create_mel_vocab.ipynb +91 -0
Create_mel_vocab.ipynb
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"source": [
|
20 |
+
"!git clone https://github.com/openai/whisper.git"
|
21 |
+
],
|
22 |
+
"metadata": {
|
23 |
+
"id": "1p9gHe1Yi3ai"
|
24 |
+
},
|
25 |
+
"execution_count": null,
|
26 |
+
"outputs": []
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"source": [
|
31 |
+
"import io\n",
|
32 |
+
"import sys\n",
|
33 |
+
"import json\n",
|
34 |
+
"import struct\n",
|
35 |
+
"import base64\n",
|
36 |
+
"import torch\n",
|
37 |
+
"import numpy as np\n",
|
38 |
+
"from pathlib import Path\n",
|
39 |
+
"\n",
|
40 |
+
"# SET PARAMETER: True: multilingual False: English only\n",
|
41 |
+
"multilingual = True\n",
|
42 |
+
"\n",
|
43 |
+
"dir_whisper = \"/content/whisper\"\n",
|
44 |
+
"dir_out = \"/content/\"\n",
|
45 |
+
"\n",
|
46 |
+
"# load mel filters\n",
|
47 |
+
"n_mels = 80\n",
|
48 |
+
"with np.load(Path(dir_whisper) / \"whisper\" / \"assets\" / \"mel_filters.npz\") as f:\n",
|
49 |
+
" filters = torch.from_numpy(f[f\"mel_{n_mels}\"])\n",
|
50 |
+
"\n",
|
51 |
+
"# load tokenizer\n",
|
52 |
+
"\n",
|
53 |
+
"tokenizer = Path(dir_whisper) / \"whisper\" / \"assets\" / (multilingual and \"multilingual.tiktoken\" or \"gpt2.tiktoken\")\n",
|
54 |
+
"\n",
|
55 |
+
"with open(tokenizer, \"rb\") as f:\n",
|
56 |
+
" contents = f.read()\n",
|
57 |
+
" tokens = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)}\n",
|
58 |
+
"\n",
|
59 |
+
"# output in the same directory as the model\n",
|
60 |
+
"fname_out = Path(dir_out) / (multilingual and \"filters_vocab_multilingual.bin\" or \"filters_vocab_en.bin\")\n",
|
61 |
+
"\n",
|
62 |
+
"fout = fname_out.open(\"wb\")\n",
|
63 |
+
"\n",
|
64 |
+
"fout.write(struct.pack(\"i\", 0x5553454E))\n",
|
65 |
+
"# write mel filters\n",
|
66 |
+
"fout.write(struct.pack(\"i\", filters.shape[0]))\n",
|
67 |
+
"fout.write(struct.pack(\"i\", filters.shape[1]))\n",
|
68 |
+
"for i in range(filters.shape[0]):\n",
|
69 |
+
" for j in range(filters.shape[1]):\n",
|
70 |
+
" fout.write(struct.pack(\"f\", filters[i][j]))\n",
|
71 |
+
"\n",
|
72 |
+
"# write tokenizer\n",
|
73 |
+
"fout.write(struct.pack(\"i\", len(tokens)))\n",
|
74 |
+
"\n",
|
75 |
+
"for key in tokens:\n",
|
76 |
+
" fout.write(struct.pack(\"i\", len(key)))\n",
|
77 |
+
" fout.write(key)\n",
|
78 |
+
"\n",
|
79 |
+
"fout.close()\n",
|
80 |
+
"\n",
|
81 |
+
"print(\"Done. Output file: \" , fname_out)\n",
|
82 |
+
"print(\"\")"
|
83 |
+
],
|
84 |
+
"metadata": {
|
85 |
+
"id": "oSJIqeknjLqD"
|
86 |
+
},
|
87 |
+
"execution_count": null,
|
88 |
+
"outputs": []
|
89 |
+
}
|
90 |
+
]
|
91 |
+
}
|