EUROPEAN_UNION model supports transcription for predefined language. Supported: all EU languages and norwegian
Browse files
Generate_tflite_for_whisper_base_EUROPEAN_UNION_version.ipynb
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "c5g9NTF_Ixad"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"##Install Tranformers and datasets"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"id": "w4VPaSlnHUvT"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"!pip install transformers==4.33.0\n",
|
21 |
+
"!pip install tensorflow==2.14.0"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"metadata": {
|
28 |
+
"id": "ClniiYCWHK4b"
|
29 |
+
},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"! pip install datasets"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"metadata": {
|
38 |
+
"id": "pljpioLsJOtb"
|
39 |
+
},
|
40 |
+
"source": [
|
41 |
+
"##Load pre trained TF Whisper Base model"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"metadata": {
|
48 |
+
"id": "BJNOxn5vHaGi"
|
49 |
+
},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"import tensorflow as tf\n",
|
53 |
+
"from transformers import TFWhisperModel, WhisperFeatureExtractor\n",
|
54 |
+
"from datasets import load_dataset\n",
|
55 |
+
"\n",
|
56 |
+
"model = TFWhisperModel.from_pretrained(\"openai/whisper-base\")\n",
|
57 |
+
"feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-base\")\n",
|
58 |
+
"\n",
|
59 |
+
"ds = load_dataset(\"google/fleurs\", \"fr_fr\", split=\"test\")\n",
|
60 |
+
"inputs = feature_extractor(\n",
|
61 |
+
" ds[0][\"audio\"][\"array\"], sampling_rate=ds[0][\"audio\"][\"sampling_rate\"], return_tensors=\"tf\"\n",
|
62 |
+
")\n",
|
63 |
+
"input_features = inputs.input_features\n",
|
64 |
+
"print(input_features)\n",
|
65 |
+
"decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id\n",
|
66 |
+
"last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state\n",
|
67 |
+
"list(last_hidden_state.shape)"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"metadata": {
|
73 |
+
"id": "W9XP25uhJl44"
|
74 |
+
},
|
75 |
+
"source": [
|
76 |
+
"##Generate Saved model"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": null,
|
82 |
+
"metadata": {
|
83 |
+
"id": "vpYwMmgyHf0B"
|
84 |
+
},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"model.save('/content/tf_whisper_saved')"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "markdown",
|
92 |
+
"metadata": {
|
93 |
+
"id": "TY_79jFEJYyJ"
|
94 |
+
},
|
95 |
+
"source": [
|
96 |
+
"##Convert saved model to TFLite model"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {
|
103 |
+
"id": "owez2zvzHl-p"
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"import tensorflow as tf\n",
|
108 |
+
"\n",
|
109 |
+
"saved_model_dir = '/content/tf_whisper_saved'\n",
|
110 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
111 |
+
"\n",
|
112 |
+
"# Convert the model\n",
|
113 |
+
"converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\n",
|
114 |
+
"converter.target_spec.supported_ops = [\n",
|
115 |
+
" tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\n",
|
116 |
+
" tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\n",
|
117 |
+
"]\n",
|
118 |
+
"converter.optimizations = [tf.lite.Optimize.DEFAULT]\n",
|
119 |
+
"tflite_model = converter.convert()\n",
|
120 |
+
"\n",
|
121 |
+
"# Save the model\n",
|
122 |
+
"with open(tflite_model_path, 'wb') as f:\n",
|
123 |
+
" f.write(tflite_model)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"metadata": {
|
130 |
+
"id": "tFkzUrjIbNcH",
|
131 |
+
"colab": {
|
132 |
+
"base_uri": "https://localhost:8080/"
|
133 |
+
},
|
134 |
+
"outputId": "0611db92-81d4-4473-9d21-ccc19da5d5c5"
|
135 |
+
},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"output_type": "stream",
|
139 |
+
"name": "stdout",
|
140 |
+
"text": [
|
141 |
+
"total 73812\n",
|
142 |
+
"drwxr-xr-x 1 root root 4096 Mar 7 19:47 \u001b[0m\u001b[01;34m.\u001b[0m/\n",
|
143 |
+
"drwxr-xr-x 1 root root 4096 Mar 7 19:39 \u001b[01;34m..\u001b[0m/\n",
|
144 |
+
"drwxr-xr-x 4 root root 4096 Mar 6 14:29 \u001b[01;34m.config\u001b[0m/\n",
|
145 |
+
"drwxr-xr-x 1 root root 4096 Mar 6 14:29 \u001b[01;34msample_data\u001b[0m/\n",
|
146 |
+
"drwxr-xr-x 4 root root 4096 Mar 7 21:54 \u001b[01;34mtf_whisper_saved\u001b[0m/\n",
|
147 |
+
"-rw-r--r-- 1 root root 75560432 Mar 7 21:55 whisper.tflite\n"
|
148 |
+
]
|
149 |
+
}
|
150 |
+
],
|
151 |
+
"source": [
|
152 |
+
"%ls -la"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "markdown",
|
157 |
+
"metadata": {
|
158 |
+
"id": "fpEnWZt7iQJK"
|
159 |
+
},
|
160 |
+
"source": [
|
161 |
+
"##Evaluate TF model"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": null,
|
167 |
+
"metadata": {
|
168 |
+
"id": "-RuFFohHg2ho",
|
169 |
+
"colab": {
|
170 |
+
"base_uri": "https://localhost:8080/"
|
171 |
+
},
|
172 |
+
"outputId": "45f8972c-6e2f-4c60-cde4-090e6572d389"
|
173 |
+
},
|
174 |
+
"outputs": [
|
175 |
+
{
|
176 |
+
"output_type": "stream",
|
177 |
+
"name": "stderr",
|
178 |
+
"text": [
|
179 |
+
"/home/wolfgang/.local/lib/python3.10/site-packages/huggingface_hub/file_download.py:1150: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
|
180 |
+
" warnings.warn(\n",
|
181 |
+
"All PyTorch model weights were used when initializing TFWhisperForConditionalGeneration.\n",
|
182 |
+
"\n",
|
183 |
+
"All the weights of TFWhisperForConditionalGeneration were initialized from the PyTorch model.\n",
|
184 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFWhisperForConditionalGeneration for predictions without further training.\n",
|
185 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. Failing to do so can result in silent errors that might be hard to debug.\n"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"output_type": "execute_result",
|
190 |
+
"data": {
|
191 |
+
"text/plain": [
|
192 |
+
"'<|startoftranscript|><|en|><|transcribe|><|notimestamps|> The accident took place in a mountainous area, and it seemed that this was caused by a bad old man.<|endoftext|>'"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
"metadata": {},
|
196 |
+
"execution_count": 6
|
197 |
+
}
|
198 |
+
],
|
199 |
+
"source": [
|
200 |
+
"import tensorflow as tf\n",
|
201 |
+
"from transformers import WhisperProcessor, TFWhisperForConditionalGeneration\n",
|
202 |
+
"from datasets import load_dataset\n",
|
203 |
+
"\n",
|
204 |
+
"processor = WhisperProcessor.from_pretrained(\"openai/whisper-base\")\n",
|
205 |
+
"model = TFWhisperForConditionalGeneration.from_pretrained(\"openai/whisper-base\")\n",
|
206 |
+
"\n",
|
207 |
+
"ds = load_dataset(\"google/fleurs\", \"fr_fr\", split=\"test\")\n",
|
208 |
+
"\n",
|
209 |
+
"inputs = processor(ds[0][\"audio\"][\"array\"], return_tensors=\"tf\")\n",
|
210 |
+
"input_features = inputs.input_features\n",
|
211 |
+
"\n",
|
212 |
+
"generated_ids = model.generate(input_features)\n",
|
213 |
+
"\n",
|
214 |
+
"transcription = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
215 |
+
"transcription"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "markdown",
|
220 |
+
"metadata": {
|
221 |
+
"id": "U-eKuy_cG4u0"
|
222 |
+
},
|
223 |
+
"source": [
|
224 |
+
"## Evaluate TF Lite model (naive)\n",
|
225 |
+
"\n",
|
226 |
+
"We can load the model as defined above... but the model is useless on its own. Generation is much more complex that a model forward pass."
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": null,
|
232 |
+
"metadata": {
|
233 |
+
"id": "wnfHirgyG0W4"
|
234 |
+
},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
238 |
+
"interpreter = tf.lite.Interpreter(tflite_model_path)"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "markdown",
|
243 |
+
"metadata": {
|
244 |
+
"id": "a8VJQuHJKzl4"
|
245 |
+
},
|
246 |
+
"source": [
|
247 |
+
"## Create generation-enabled TF Lite model\n",
|
248 |
+
"\n",
|
249 |
+
"The solution consists in defining a model whose serving function is the generation call. Here's an example of how to do it:"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "markdown",
|
254 |
+
"metadata": {
|
255 |
+
"id": "JmIgqWVgVBZN"
|
256 |
+
},
|
257 |
+
"source": [
|
258 |
+
"Now with monkey-patch for fixing NaN errors with -inf values"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": null,
|
264 |
+
"metadata": {
|
265 |
+
"id": "e5P8s66yU7Kv"
|
266 |
+
},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"import tensorflow as tf\n",
|
270 |
+
"import numpy as np\n",
|
271 |
+
"from transformers import TFForceTokensLogitsProcessor, TFLogitsProcessor\n",
|
272 |
+
"from typing import List, Optional, Union, Any\n",
|
273 |
+
"\n",
|
274 |
+
"# Patching methods of class TFForceTokensLogitsProcessor(TFLogitsProcessor):\n",
|
275 |
+
"\n",
|
276 |
+
"def my__init__(self, force_token_map: List[List[int]]):\n",
|
277 |
+
" force_token_map = dict(force_token_map)\n",
|
278 |
+
" # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the\n",
|
279 |
+
" # index of the array corresponds to the index of the token to be forced, for XLA compatibility.\n",
|
280 |
+
" # Indexes without forced tokens will have an negative value.\n",
|
281 |
+
" force_token_array = np.ones((max(force_token_map.keys()) + 1), dtype=np.int32) * -1\n",
|
282 |
+
" for index, token in force_token_map.items():\n",
|
283 |
+
" if token is not None:\n",
|
284 |
+
" force_token_array[index] = token\n",
|
285 |
+
" self.force_token_array = tf.convert_to_tensor(force_token_array, dtype=tf.int32)\n",
|
286 |
+
"\n",
|
287 |
+
"def my__call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:\n",
|
288 |
+
" def _force_token(generation_idx):\n",
|
289 |
+
" batch_size = scores.shape[0]\n",
|
290 |
+
" current_token = self.force_token_array[generation_idx]\n",
|
291 |
+
"\n",
|
292 |
+
" # Original code below generates NaN values when the model is exported to tflite\n",
|
293 |
+
" # it just needs to be a negative number so that the forced token's value of 0 is the largest\n",
|
294 |
+
" # so it will get chosen\n",
|
295 |
+
" #new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float(\"inf\")\n",
|
296 |
+
" new_scores = tf.ones_like(scores, dtype=scores.dtype) * -float(1)\n",
|
297 |
+
" indices = tf.stack((tf.range(batch_size), tf.tile([current_token], [batch_size])), axis=1)\n",
|
298 |
+
" updates = tf.zeros((batch_size,), dtype=scores.dtype)\n",
|
299 |
+
" new_scores = tf.tensor_scatter_nd_update(new_scores, indices, updates)\n",
|
300 |
+
" return new_scores\n",
|
301 |
+
"\n",
|
302 |
+
" scores = tf.cond(\n",
|
303 |
+
" tf.greater_equal(cur_len, tf.shape(self.force_token_array)[0]),\n",
|
304 |
+
" # If the current length is geq than the length of force_token_array, the processor does nothing.\n",
|
305 |
+
" lambda: tf.identity(scores),\n",
|
306 |
+
" # Otherwise, it may force a certain token.\n",
|
307 |
+
" lambda: tf.cond(\n",
|
308 |
+
" tf.greater_equal(self.force_token_array[cur_len], 0),\n",
|
309 |
+
" # Only valid (positive) tokens are forced\n",
|
310 |
+
" lambda: _force_token(cur_len),\n",
|
311 |
+
" # Otherwise, the processor does nothing.\n",
|
312 |
+
" lambda: scores,\n",
|
313 |
+
" ),\n",
|
314 |
+
" )\n",
|
315 |
+
" return scores\n",
|
316 |
+
"\n",
|
317 |
+
"TFForceTokensLogitsProcessor.__init__ = my__init__\n",
|
318 |
+
"TFForceTokensLogitsProcessor.__call__ = my__call__"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": null,
|
324 |
+
"metadata": {
|
325 |
+
"id": "rIkUCdiyU7ZT"
|
326 |
+
},
|
327 |
+
"outputs": [],
|
328 |
+
"source": [
|
329 |
+
"import tensorflow as tf\n",
|
330 |
+
"\n",
|
331 |
+
"class GenerateModel(tf.Module):\n",
|
332 |
+
" def __init__(self, model):\n",
|
333 |
+
" super(GenerateModel, self).__init__()\n",
|
334 |
+
" self.model = model\n",
|
335 |
+
"\n",
|
336 |
+
" @tf.function(\n",
|
337 |
+
" input_signature=[\n",
|
338 |
+
" tf.TensorSpec((1, 80, 3000), tf.float32, name=\"input_features\"),\n",
|
339 |
+
" tf.TensorSpec((), tf.int32, name=\"lang_token\"),\n",
|
340 |
+
" ],\n",
|
341 |
+
" )\n",
|
342 |
+
" def transcribe_lang(self, input_features, lang_token):\n",
|
343 |
+
" if lang_token == 50259:\n",
|
344 |
+
" outputs = self.model.generate(\n",
|
345 |
+
" input_features,\n",
|
346 |
+
" max_new_tokens=450,\n",
|
347 |
+
" return_dict_in_generate=True,\n",
|
348 |
+
" forced_decoder_ids=[[1, 50259], [2, 50359], [3, 50363]],\n",
|
349 |
+
" )\n",
|
350 |
+
"\n",
|
351 |
+
" elif lang_token == 50261:\n",
|
352 |
+
" outputs = self.model.generate(\n",
|
353 |
+
" input_features,\n",
|
354 |
+
" max_new_tokens=450,\n",
|
355 |
+
" return_dict_in_generate=True,\n",
|
356 |
+
" forced_decoder_ids=[[1, 50261], [2, 50359], [3, 50363]],\n",
|
357 |
+
" )\n",
|
358 |
+
"\n",
|
359 |
+
" elif lang_token == 50262:\n",
|
360 |
+
" outputs = self.model.generate(\n",
|
361 |
+
" input_features,\n",
|
362 |
+
" max_new_tokens=450,\n",
|
363 |
+
" return_dict_in_generate=True,\n",
|
364 |
+
" forced_decoder_ids=[[1, 50262], [2, 50359], [3, 50363]],\n",
|
365 |
+
" )\n",
|
366 |
+
"\n",
|
367 |
+
" elif lang_token == 50265:\n",
|
368 |
+
" outputs = self.model.generate(\n",
|
369 |
+
" input_features,\n",
|
370 |
+
" max_new_tokens=450,\n",
|
371 |
+
" return_dict_in_generate=True,\n",
|
372 |
+
" forced_decoder_ids=[[1, 50265], [2, 50359], [3, 50363]],\n",
|
373 |
+
" )\n",
|
374 |
+
"\n",
|
375 |
+
" elif lang_token == 50267:\n",
|
376 |
+
" outputs = self.model.generate(\n",
|
377 |
+
" input_features,\n",
|
378 |
+
" max_new_tokens=450,\n",
|
379 |
+
" return_dict_in_generate=True,\n",
|
380 |
+
" forced_decoder_ids=[[1, 50267], [2, 50359], [3, 50363]],\n",
|
381 |
+
" )\n",
|
382 |
+
"\n",
|
383 |
+
" elif lang_token == 50268:\n",
|
384 |
+
" outputs = self.model.generate(\n",
|
385 |
+
" input_features,\n",
|
386 |
+
" max_new_tokens=450,\n",
|
387 |
+
" return_dict_in_generate=True,\n",
|
388 |
+
" forced_decoder_ids=[[1, 50268], [2, 50359], [3, 50363]],\n",
|
389 |
+
" )\n",
|
390 |
+
"\n",
|
391 |
+
" elif lang_token == 50269:\n",
|
392 |
+
" outputs = self.model.generate(\n",
|
393 |
+
" input_features,\n",
|
394 |
+
" max_new_tokens=450,\n",
|
395 |
+
" return_dict_in_generate=True,\n",
|
396 |
+
" forced_decoder_ids=[[1, 50269], [2, 50359], [3, 50363]],\n",
|
397 |
+
" )\n",
|
398 |
+
"\n",
|
399 |
+
" elif lang_token == 50271:\n",
|
400 |
+
" outputs = self.model.generate(\n",
|
401 |
+
" input_features,\n",
|
402 |
+
" max_new_tokens=450,\n",
|
403 |
+
" return_dict_in_generate=True,\n",
|
404 |
+
" forced_decoder_ids=[[1, 50271], [2, 50359], [3, 50363]],\n",
|
405 |
+
" )\n",
|
406 |
+
"\n",
|
407 |
+
" elif lang_token == 50273:\n",
|
408 |
+
" outputs = self.model.generate(\n",
|
409 |
+
" input_features,\n",
|
410 |
+
" max_new_tokens=450,\n",
|
411 |
+
" return_dict_in_generate=True,\n",
|
412 |
+
" forced_decoder_ids=[[1, 50273], [2, 50359], [3, 50363]],\n",
|
413 |
+
" )\n",
|
414 |
+
"\n",
|
415 |
+
" elif lang_token == 50274:\n",
|
416 |
+
" outputs = self.model.generate(\n",
|
417 |
+
" input_features,\n",
|
418 |
+
" max_new_tokens=450,\n",
|
419 |
+
" return_dict_in_generate=True,\n",
|
420 |
+
" forced_decoder_ids=[[1, 50274], [2, 50359], [3, 50363]],\n",
|
421 |
+
" )\n",
|
422 |
+
"\n",
|
423 |
+
" elif lang_token == 50277:\n",
|
424 |
+
" outputs = self.model.generate(\n",
|
425 |
+
" input_features,\n",
|
426 |
+
" max_new_tokens=450,\n",
|
427 |
+
" return_dict_in_generate=True,\n",
|
428 |
+
" forced_decoder_ids=[[1, 50277], [2, 50359], [3, 50363]],\n",
|
429 |
+
" )\n",
|
430 |
+
"\n",
|
431 |
+
" elif lang_token == 50281:\n",
|
432 |
+
" outputs = self.model.generate(\n",
|
433 |
+
" input_features,\n",
|
434 |
+
" max_new_tokens=450,\n",
|
435 |
+
" return_dict_in_generate=True,\n",
|
436 |
+
" forced_decoder_ids=[[1, 50281], [2, 50359], [3, 50363]],\n",
|
437 |
+
" )\n",
|
438 |
+
"\n",
|
439 |
+
" elif lang_token == 50283:\n",
|
440 |
+
" outputs = self.model.generate(\n",
|
441 |
+
" input_features,\n",
|
442 |
+
" max_new_tokens=450,\n",
|
443 |
+
" return_dict_in_generate=True,\n",
|
444 |
+
" forced_decoder_ids=[[1, 50283], [2, 50359], [3, 50363]],\n",
|
445 |
+
" )\n",
|
446 |
+
"\n",
|
447 |
+
" elif lang_token == 50284:\n",
|
448 |
+
" outputs = self.model.generate(\n",
|
449 |
+
" input_features,\n",
|
450 |
+
" max_new_tokens=450,\n",
|
451 |
+
" return_dict_in_generate=True,\n",
|
452 |
+
" forced_decoder_ids=[[1, 50284], [2, 50359], [3, 50363]],\n",
|
453 |
+
" )\n",
|
454 |
+
"\n",
|
455 |
+
" elif lang_token == 50285:\n",
|
456 |
+
" outputs = self.model.generate(\n",
|
457 |
+
" input_features,\n",
|
458 |
+
" max_new_tokens=450,\n",
|
459 |
+
" return_dict_in_generate=True,\n",
|
460 |
+
" forced_decoder_ids=[[1, 50285], [2, 50359], [3, 50363]],\n",
|
461 |
+
" )\n",
|
462 |
+
"\n",
|
463 |
+
" elif lang_token == 50286:\n",
|
464 |
+
" outputs = self.model.generate(\n",
|
465 |
+
" input_features,\n",
|
466 |
+
" max_new_tokens=450,\n",
|
467 |
+
" return_dict_in_generate=True,\n",
|
468 |
+
" forced_decoder_ids=[[1, 50286], [2, 50359], [3, 50363]],\n",
|
469 |
+
" )\n",
|
470 |
+
"\n",
|
471 |
+
" elif lang_token == 50288:\n",
|
472 |
+
" outputs = self.model.generate(\n",
|
473 |
+
" input_features,\n",
|
474 |
+
" max_new_tokens=450,\n",
|
475 |
+
" return_dict_in_generate=True,\n",
|
476 |
+
" forced_decoder_ids=[[1, 50288], [2, 50359], [3, 50363]],\n",
|
477 |
+
" )\n",
|
478 |
+
"\n",
|
479 |
+
" elif lang_token == 50291:\n",
|
480 |
+
" outputs = self.model.generate(\n",
|
481 |
+
" input_features,\n",
|
482 |
+
" max_new_tokens=450,\n",
|
483 |
+
" return_dict_in_generate=True,\n",
|
484 |
+
" forced_decoder_ids=[[1, 50291], [2, 50359], [3, 50363]],\n",
|
485 |
+
" )\n",
|
486 |
+
"\n",
|
487 |
+
" elif lang_token == 50292:\n",
|
488 |
+
" outputs = self.model.generate(\n",
|
489 |
+
" input_features,\n",
|
490 |
+
" max_new_tokens=450,\n",
|
491 |
+
" return_dict_in_generate=True,\n",
|
492 |
+
" forced_decoder_ids=[[1, 50292], [2, 50359], [3, 50363]],\n",
|
493 |
+
" )\n",
|
494 |
+
"\n",
|
495 |
+
" elif lang_token == 50293:\n",
|
496 |
+
" outputs = self.model.generate(\n",
|
497 |
+
" input_features,\n",
|
498 |
+
" max_new_tokens=450,\n",
|
499 |
+
" return_dict_in_generate=True,\n",
|
500 |
+
" forced_decoder_ids=[[1, 50293], [2, 50359], [3, 50363]],\n",
|
501 |
+
" )\n",
|
502 |
+
"\n",
|
503 |
+
" elif lang_token == 50298:\n",
|
504 |
+
" outputs = self.model.generate(\n",
|
505 |
+
" input_features,\n",
|
506 |
+
" max_new_tokens=450,\n",
|
507 |
+
" return_dict_in_generate=True,\n",
|
508 |
+
" forced_decoder_ids=[[1, 50298], [2, 50359], [3, 50363]],\n",
|
509 |
+
" )\n",
|
510 |
+
"\n",
|
511 |
+
" elif lang_token == 50301:\n",
|
512 |
+
" outputs = self.model.generate(\n",
|
513 |
+
" input_features,\n",
|
514 |
+
" max_new_tokens=450,\n",
|
515 |
+
" return_dict_in_generate=True,\n",
|
516 |
+
" forced_decoder_ids=[[1, 50301], [2, 50359], [3, 50363]],\n",
|
517 |
+
" )\n",
|
518 |
+
"\n",
|
519 |
+
" elif lang_token == 50305:\n",
|
520 |
+
" outputs = self.model.generate(\n",
|
521 |
+
" input_features,\n",
|
522 |
+
" max_new_tokens=450,\n",
|
523 |
+
" return_dict_in_generate=True,\n",
|
524 |
+
" forced_decoder_ids=[[1, 50305], [2, 50359], [3, 50363]],\n",
|
525 |
+
" )\n",
|
526 |
+
"\n",
|
527 |
+
" elif lang_token == 50307:\n",
|
528 |
+
" outputs = self.model.generate(\n",
|
529 |
+
" input_features,\n",
|
530 |
+
" max_new_tokens=450,\n",
|
531 |
+
" return_dict_in_generate=True,\n",
|
532 |
+
" forced_decoder_ids=[[1, 50307], [2, 50359], [3, 50363]],\n",
|
533 |
+
" )\n",
|
534 |
+
"\n",
|
535 |
+
" elif lang_token == 50343:\n",
|
536 |
+
" outputs = self.model.generate(\n",
|
537 |
+
" input_features,\n",
|
538 |
+
" max_new_tokens=450,\n",
|
539 |
+
" return_dict_in_generate=True,\n",
|
540 |
+
" forced_decoder_ids=[[1, 50343], [2, 50359], [3, 50363]],\n",
|
541 |
+
" )\n",
|
542 |
+
"\n",
|
543 |
+
" elif lang_token == 50345:\n",
|
544 |
+
" outputs = self.model.generate(\n",
|
545 |
+
" input_features,\n",
|
546 |
+
" max_new_tokens=450,\n",
|
547 |
+
" return_dict_in_generate=True,\n",
|
548 |
+
" forced_decoder_ids=[[1, 50345], [2, 50359], [3, 50363]],\n",
|
549 |
+
" )\n",
|
550 |
+
"\n",
|
551 |
+
" else:\n",
|
552 |
+
" outputs = self.model.generate(\n",
|
553 |
+
" input_features,\n",
|
554 |
+
" max_new_tokens=450, # change as needed\n",
|
555 |
+
" return_dict_in_generate=True,\n",
|
556 |
+
" forced_decoder_ids=[[2, 50359], [3, 50363]],\n",
|
557 |
+
" )\n",
|
558 |
+
" return {\"sequences\": outputs[\"sequences\"]}\n",
|
559 |
+
"\n",
|
560 |
+
"\n",
|
561 |
+
" @tf.function(\n",
|
562 |
+
" input_signature=[\n",
|
563 |
+
" tf.TensorSpec((1, 80, 3000), tf.float32, name=\"input_features\"),\n",
|
564 |
+
" ],\n",
|
565 |
+
" )\n",
|
566 |
+
" def transcribe(self, input_features):\n",
|
567 |
+
" outputs = self.model.generate(\n",
|
568 |
+
" input_features,\n",
|
569 |
+
" max_new_tokens=450, # change as needed\n",
|
570 |
+
" return_dict_in_generate=True,\n",
|
571 |
+
" forced_decoder_ids=[[2, 50359], [3, 50363]],\n",
|
572 |
+
" )\n",
|
573 |
+
" return {\"sequences\": outputs[\"sequences\"]}\n",
|
574 |
+
"\n",
|
575 |
+
" @tf.function(\n",
|
576 |
+
" input_signature=[\n",
|
577 |
+
" tf.TensorSpec((1, 80, 3000), tf.float32, name=\"input_features\"),\n",
|
578 |
+
" ],\n",
|
579 |
+
" )\n",
|
580 |
+
" def translate(self, input_features):\n",
|
581 |
+
" outputs = self.model.generate(\n",
|
582 |
+
" input_features,\n",
|
583 |
+
" max_new_tokens=450, # change as needed\n",
|
584 |
+
" return_dict_in_generate=True,\n",
|
585 |
+
" forced_decoder_ids=[[2, 50358], [3, 50363]],\n",
|
586 |
+
" )\n",
|
587 |
+
" return {\"sequences\": outputs[\"sequences\"]}\n",
|
588 |
+
"\n",
|
589 |
+
"# Assuming `model` is already defined and loaded\n",
|
590 |
+
"saved_model_dir = '/content/tf_whisper_saved'\n",
|
591 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
592 |
+
"\n",
|
593 |
+
"generate_model = GenerateModel(model=model)\n",
|
594 |
+
"tf.saved_model.save(generate_model, saved_model_dir, signatures={\n",
|
595 |
+
" \"serving_default\": generate_model.transcribe,\n",
|
596 |
+
" \"serving_transcribe\": generate_model.transcribe,\n",
|
597 |
+
" \"serving_translate\": generate_model.translate,\n",
|
598 |
+
" \"serving_transcribe_lang\": generate_model.transcribe_lang,\n",
|
599 |
+
"\n",
|
600 |
+
"})\n",
|
601 |
+
"\n",
|
602 |
+
"# Convert the model\n",
|
603 |
+
"converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)\n",
|
604 |
+
"converter.target_spec.supported_ops = [\n",
|
605 |
+
" tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\n",
|
606 |
+
" tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\n",
|
607 |
+
"]\n",
|
608 |
+
"converter.optimizations = [tf.lite.Optimize.DEFAULT]\n",
|
609 |
+
"tflite_model = converter.convert()\n",
|
610 |
+
"\n",
|
611 |
+
"# Save the model\n",
|
612 |
+
"with open(tflite_model_path, 'wb') as f:\n",
|
613 |
+
" f.write(tflite_model)"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"cell_type": "code",
|
618 |
+
"source": [
|
619 |
+
"pwd"
|
620 |
+
],
|
621 |
+
"metadata": {
|
622 |
+
"colab": {
|
623 |
+
"base_uri": "https://localhost:8080/",
|
624 |
+
"height": 35
|
625 |
+
},
|
626 |
+
"id": "llf-5421rZ-G",
|
627 |
+
"outputId": "869a4c96-7f76-4834-d00f-9f4078f4d300"
|
628 |
+
},
|
629 |
+
"execution_count": null,
|
630 |
+
"outputs": [
|
631 |
+
{
|
632 |
+
"output_type": "execute_result",
|
633 |
+
"data": {
|
634 |
+
"text/plain": [
|
635 |
+
"'/content'"
|
636 |
+
],
|
637 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
638 |
+
"type": "string"
|
639 |
+
}
|
640 |
+
},
|
641 |
+
"metadata": {},
|
642 |
+
"execution_count": 2
|
643 |
+
}
|
644 |
+
]
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"cell_type": "code",
|
648 |
+
"source": [
|
649 |
+
"!zip -r /content/tf_whisper_saved.zip /content/tf_whisper_saved/"
|
650 |
+
],
|
651 |
+
"metadata": {
|
652 |
+
"colab": {
|
653 |
+
"base_uri": "https://localhost:8080/"
|
654 |
+
},
|
655 |
+
"collapsed": true,
|
656 |
+
"id": "7pnAWtGZp6MJ",
|
657 |
+
"outputId": "42d6c775-1af9-4482-837a-eb3537d5e2c0"
|
658 |
+
},
|
659 |
+
"execution_count": null,
|
660 |
+
"outputs": [
|
661 |
+
{
|
662 |
+
"output_type": "stream",
|
663 |
+
"name": "stdout",
|
664 |
+
"text": [
|
665 |
+
" adding: content/tf_whisper_saved/ (stored 0%)\n",
|
666 |
+
" adding: content/tf_whisper_saved/assets/ (stored 0%)\n",
|
667 |
+
" adding: content/tf_whisper_saved/variables/ (stored 0%)\n",
|
668 |
+
" adding: content/tf_whisper_saved/variables/variables.data-00000-of-00001 (deflated 41%)\n",
|
669 |
+
" adding: content/tf_whisper_saved/variables/variables.index (deflated 79%)\n",
|
670 |
+
" adding: content/tf_whisper_saved/fingerprint.pb (stored 0%)\n",
|
671 |
+
" adding: content/tf_whisper_saved/keras_metadata.pb (deflated 96%)\n",
|
672 |
+
" adding: content/tf_whisper_saved/saved_model.pb (deflated 93%)\n"
|
673 |
+
]
|
674 |
+
}
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"cell_type": "code",
|
679 |
+
"execution_count": null,
|
680 |
+
"metadata": {
|
681 |
+
"id": "u9MustgMU7oI"
|
682 |
+
},
|
683 |
+
"outputs": [],
|
684 |
+
"source": [
|
685 |
+
"# loaded model... now with generate!\n",
|
686 |
+
"tflite_model_path = 'whisper.tflite'\n",
|
687 |
+
"interpreter = tf.lite.Interpreter(tflite_model_path)\n",
|
688 |
+
"\n",
|
689 |
+
"tflite_generate = interpreter.get_signature_runner('serving_transcribe_lang')\n",
|
690 |
+
"lang_token = tf.constant([50286], dtype=tf.int32)\n",
|
691 |
+
"generated_ids = tflite_generate(input_features=input_features,lang_token=lang_token)[\"sequences\"]\n",
|
692 |
+
"transcription = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]\n",
|
693 |
+
"transcription\n",
|
694 |
+
"\n",
|
695 |
+
"\n"
|
696 |
+
]
|
697 |
+
}
|
698 |
+
],
|
699 |
+
"metadata": {
|
700 |
+
"colab": {
|
701 |
+
"machine_shape": "hm",
|
702 |
+
"provenance": []
|
703 |
+
},
|
704 |
+
"kernelspec": {
|
705 |
+
"display_name": "Python 3",
|
706 |
+
"name": "python3"
|
707 |
+
},
|
708 |
+
"language_info": {
|
709 |
+
"name": "python"
|
710 |
+
}
|
711 |
+
},
|
712 |
+
"nbformat": 4,
|
713 |
+
"nbformat_minor": 0
|
714 |
+
}
|
whisper-base.EUROPEAN_UNION.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8fb947274f87da1298f24b7dce39920cebb9f9558f6deb0c6a591a3bbb395bb
|
3 |
+
size 94819264
|
whisper-base.EUROPEAN_UNION.tokens
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[50259, 50261, 50262, 50265, 50267, 50268, 50269, 50271, 50273, 50274, 50277, 50281, 50283, 50284, 50285, 50286, 50288, 50291, 50292, 50293, 50298, 50301, 50305, 50307, 50343, 50345]
|