exl2 quant (measurement.json in main branch)

check revisions for quants


Model Visualization

Hamanasu 15B Instruct

🌌 Overview

After multiple days of training, I'm proud to showcase my very own Phi-4 Finetune, Pretrained on almost a billion tokens worth of Books from

  • NewEden/Orion-LIT
  • NewEden/Orion-Asstr-Stories-16K
  • Mielikki/Erebus-87k

Then instruct tuned. This model shows great promise for roleplaying while keeping things fresh and new. (And most of, Unsloppy!)

βš”οΈ Hardware

  • 4x RTX 3090 GPUs
  • Epochs: 4
  • Base: Hamanasu-15B-R2-PT
  • Amount of Tokens: 1+ Billion

πŸ’° Prompting

A known quirk of the model is overly verbose responses when generation length is uncapped, Please cap your maximum output tokens to 100~ tokens above what you prefer

<|im_start|>system
You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|>
<|im_start|>User request
Take off your helmet.<|im_end|>
<|im_start|>No i shall not. This is the way.

Axolotl Config κ’°(ΛΆβ€’ α΄— β€’ΛΆ)κ’±

base_model: NewEden_Phi-PT-merged-LIT
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true


load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
    type: dan-chat-advanced
  - path: Nitral-AI/ARES-ShareGPT
    type: dan-chat-advanced
  - path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
    type: dan-chat-advanced
  - path: NewEden/Claude-Instruct-2.7K
    type: dan-chat-advanced
  - path: NewEden/Claude-Instruct-5K
    type: dan-chat-advanced

shuffle_merged_datasets: true
dataset_prepared_path: prepared_data
val_set_size: 0.0
output_dir: ./phi4-inst-out-r2

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16 
lora_dropout: 0.05
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

lora_modules_to_save:
 - embed_tokens
 - lm_head


wandb_project: mag-phi
wandb_entity:
wandb_watch:
wandb_name: inst-attempt-02
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 0.000025

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 15
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.01
fsdp:
fsdp_config:

⚑ Credits


Made by
Delta-Vector
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Delta-Vector/Hamanasu-15B-Instruct-exl2

Datasets used to train Delta-Vector/Hamanasu-15B-Instruct-exl2

Collection including Delta-Vector/Hamanasu-15B-Instruct-exl2