Debk commited on
Commit
2e213f4
·
verified ·
1 Parent(s): 6c8f69e

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: He said he has personally visited the North Eastern States several
12
+ times to review development work.
13
+ sentences:
14
+ - ଏହି ପରିବର୍ତ୍ତନ ଦ୍ୱାରା ଭାରତର ରାଜନୀତିରେ ଦୁଇଟି ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ପରିବର୍ତ୍ତନ ହେଲା ।
15
+ - ଆଜି ରାତ୍ରିର କଥା କିନ୍ତୁ ସ୍ଵତନ୍ତ୍ର ।
16
+ - ସେ ବ୍ୟକ୍ତିଗତ ଭାବେ ଅନେକ ଥର ବିକାଶ କାର୍ଯ୍ୟର ସମୀକ୍ଷା କରିବା ପାଇଁ ଉତ୍ତରପୂର୍ବାଂଚଳ ରାଜ୍ୟମାନଙ୍କୁ
17
+ ଗସ୍ତ କରିଛନ୍ତି ।
18
+ - source_sentence: That they may keep thee from the strange woman, from the stranger
19
+ which flattereth with her words.
20
+ sentences:
21
+ - ସମାନେେ ତାହା ମଧିଅରେ ନିରାପଦ ରେ ବାସ କରିବେ। ସମାନେେ ଗୃହ ନିର୍ମାଣ କରିବେ ଓ ଦ୍ରାକ୍ଷାକ୍ଷେତ୍ର
22
+ ରୋପଣ କରିବେ। ମୁଁ ତା'ର ଚତୁର୍ଦ୍ଦିଗସ୍ଥିତ ସମସ୍ତ ଦେଶକୁ ଦଣ୍ଡିତ କରିବି ଯେଉଁମାନେ ସମାନଙ୍କେୁ
23
+ ତିରସ୍କାର କଲେ, ତା'ପ ରେ ସମାନେେ ନିରାପଦ ରେ ବାସ କରିବେ, ତହିଁରେ ମୁଁ ଯେ ସଦାପ୍ରଭୁ ଓ ସମାନଙ୍କେର
24
+ ପରମେଶ୍ବର ଅଟେ ଏହା ସମାନେେ ଜାଣିବେ।"
25
+ - ଏହି ବୁଝାମଣାର ଉଦ୍ଦେଶ୍ୟ, ଦୁଗ୍ଧ ଉତ୍ପାଦନ ବିକାଶ ଏବଂ ସମ୍ବଳ ସୁଦୃଢ଼ୀକରଣ ଆଧାରରେ ବର୍ତ୍ତମାନର
26
+ ଜ୍ଞାନକୁ ବ୍ୟାପକ କରିବା ଲାଗି ପଶୁପାଳନ ଏବଂ ଦୁଗ୍ଧ ଉତ୍ପାଦନ କ୍ଷେତ୍ରରେ ଦ୍ୱିପାକ୍ଷିକ ସହଯୋଗକୁ
27
+ ପ୍ରୋତ୍ସାହନ ଦେବା ।
28
+ - ତବେେ ତାହା ତୁମ୍ଭକୁ ଅନ୍ୟ ପର ସ୍ତ୍ରୀଠାରୁ ରକ୍ଷା କରିବ। ଏବଂ ବ୍ଯଭିଚାରିଣୀ ସ୍ତ୍ରୀଙ୍କଠାରୁ
29
+ ମଧ୍ଯ ରକ୍ଷା କରିବ।
30
+ pipeline_tag: sentence-similarity
31
+ library_name: sentence-transformers
32
+ metrics:
33
+ - pearson_cosine
34
+ - spearman_cosine
35
+ model-index:
36
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
37
+ results:
38
+ - task:
39
+ type: semantic-similarity
40
+ name: Semantic Similarity
41
+ dataset:
42
+ name: dev evaluation
43
+ type: dev-evaluation
44
+ metrics:
45
+ - type: pearson_cosine
46
+ value: .nan
47
+ name: Pearson Cosine
48
+ - type: spearman_cosine
49
+ value: .nan
50
+ name: Spearman Cosine
51
+ ---
52
+
53
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
54
+
55
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** Sentence Transformer
61
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
62
+ - **Maximum Sequence Length:** 128 tokens
63
+ - **Output Dimensionality:** 384 dimensions
64
+ - **Similarity Function:** Cosine Similarity
65
+ <!-- - **Training Dataset:** Unknown -->
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
72
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
73
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
74
+
75
+ ### Full Model Architecture
76
+
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
80
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
81
+ )
82
+ ```
83
+
84
+ ## Usage
85
+
86
+ ### Direct Usage (Sentence Transformers)
87
+
88
+ First install the Sentence Transformers library:
89
+
90
+ ```bash
91
+ pip install -U sentence-transformers
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+ ```python
96
+ from sentence_transformers import SentenceTransformer
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SentenceTransformer("Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2")
100
+ # Run inference
101
+ sentences = [
102
+ 'That they may keep thee from the strange woman, from the stranger which flattereth with her words.',
103
+ 'ତବେେ ତାହା ତୁମ୍ଭକୁ ଅନ୍ୟ ପର ସ୍ତ୍ରୀଠାରୁ ରକ୍ଷା କରିବ। ଏବଂ ବ୍ଯଭିଚାରିଣୀ ସ୍ତ୍ରୀଙ୍କଠାରୁ ମଧ୍ଯ ରକ୍ଷା କରିବ।',
104
+ 'ସମାନେେ ତାହା ମଧିଅରେ ନିରାପଦ ରେ ବାସ କରିବେ। ସମାନେେ ଗୃହ ନିର୍ମାଣ କରିବେ ଓ ଦ୍ରାକ୍ଷାକ୍ଷେତ୍ର ରୋପଣ କରିବେ। ମୁଁ ତା\'ର ଚତୁର୍ଦ୍ଦିଗସ୍ଥିତ ସମସ୍ତ ଦେଶକୁ ଦଣ୍ଡିତ କରିବି ଯେଉଁମାନେ ସମାନଙ୍କେୁ ତିରସ୍କାର କଲେ, ତା\'ପ ରେ ସମାନେେ ନିରାପଦ ରେ ବାସ କରିବେ, ତହିଁରେ ମୁଁ ଯେ ସଦାପ୍ରଭୁ ଓ ସମାନଙ୍କେର ପରମେଶ୍ବର ଅଟେ ଏହା ସମାନେେ ଜାଣିବେ।"',
105
+ ]
106
+ embeddings = model.encode(sentences)
107
+ print(embeddings.shape)
108
+ # [3, 384]
109
+
110
+ # Get the similarity scores for the embeddings
111
+ similarities = model.similarity(embeddings, embeddings)
112
+ print(similarities.shape)
113
+ # [3, 3]
114
+ ```
115
+
116
+ <!--
117
+ ### Direct Usage (Transformers)
118
+
119
+ <details><summary>Click to see the direct usage in Transformers</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Downstream Usage (Sentence Transformers)
126
+
127
+ You can finetune this model on your own dataset.
128
+
129
+ <details><summary>Click to expand</summary>
130
+
131
+ </details>
132
+ -->
133
+
134
+ <!--
135
+ ### Out-of-Scope Use
136
+
137
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
138
+ -->
139
+
140
+ ## Evaluation
141
+
142
+ ### Metrics
143
+
144
+ #### Semantic Similarity
145
+
146
+ * Dataset: `dev-evaluation`
147
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
148
+
149
+ | Metric | Value |
150
+ |:--------------------|:--------|
151
+ | pearson_cosine | nan |
152
+ | **spearman_cosine** | **nan** |
153
+
154
+ <!--
155
+ ## Bias, Risks and Limitations
156
+
157
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
158
+ -->
159
+
160
+ <!--
161
+ ### Recommendations
162
+
163
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
164
+ -->
165
+
166
+ ## Training Details
167
+
168
+ ### Training Dataset
169
+
170
+ #### Unnamed Dataset
171
+
172
+
173
+ * Size: 10 training samples
174
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
175
+ * Approximate statistics based on the first 10 samples:
176
+ | | sentence_0 | sentence_1 | label |
177
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
178
+ | type | string | string | float |
179
+ | details | <ul><li>min: 6 tokens</li><li>mean: 27.6 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 37.8 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.9</li><li>max: 0.9</li></ul> |
180
+ * Samples:
181
+ | sentence_0 | sentence_1 | label |
182
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:-----------------|
183
+ | <code>Am I now come up without the LORD against this place to destroy it? The LORD said to me, Go up against this land, and destroy it.</code> | <code>ସଦାପ୍ରଭୁଙ୍କ ବିନା ମୁଁ ଏ ଦେଶ ଧଂସ କରିବାକୁ ଆସି ନା���ିଁ। ସଦାପ୍ରଭୁ ମାେତେ କହିଲେ, "ଏହି ଦେଶ ବିରୁଦ୍ଧ ରେ ୟାଅ ଓ ତାକୁ ଧ୍ବଂସ କର!"</code> | <code>0.9</code> |
184
+ | <code>He said that Yoga could lead to a calm, creative and content life, removing tensions and needless anxiety.</code> | <code>ଅବସାଦ ଏବଂ ଅଯଥା ଚିନ୍ତା ଦୂର କରି ଯୋଗ ଏକ ଶାନ୍ତ, ସୃଜନଶୀଳ ଏବଂ ସାମଗ୍ରୀକ ଜୀବନ ଆଡ଼କୁ ନେଇଯାଇପାରେ ।</code> | <code>0.9</code> |
185
+ | <code>But that night was special.</code> | <code>ଆଜି ରାତ୍ରିର କଥା କିନ୍ତୁ ସ୍ଵତନ୍ତ୍ର ।</code> | <code>0.9</code> |
186
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
187
+ ```json
188
+ {
189
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
190
+ }
191
+ ```
192
+
193
+ ### Training Hyperparameters
194
+ #### Non-Default Hyperparameters
195
+
196
+ - `eval_strategy`: steps
197
+ - `per_device_train_batch_size`: 16
198
+ - `per_device_eval_batch_size`: 16
199
+ - `multi_dataset_batch_sampler`: round_robin
200
+
201
+ #### All Hyperparameters
202
+ <details><summary>Click to expand</summary>
203
+
204
+ - `overwrite_output_dir`: False
205
+ - `do_predict`: False
206
+ - `eval_strategy`: steps
207
+ - `prediction_loss_only`: True
208
+ - `per_device_train_batch_size`: 16
209
+ - `per_device_eval_batch_size`: 16
210
+ - `per_gpu_train_batch_size`: None
211
+ - `per_gpu_eval_batch_size`: None
212
+ - `gradient_accumulation_steps`: 1
213
+ - `eval_accumulation_steps`: None
214
+ - `torch_empty_cache_steps`: None
215
+ - `learning_rate`: 5e-05
216
+ - `weight_decay`: 0.0
217
+ - `adam_beta1`: 0.9
218
+ - `adam_beta2`: 0.999
219
+ - `adam_epsilon`: 1e-08
220
+ - `max_grad_norm`: 1
221
+ - `num_train_epochs`: 3
222
+ - `max_steps`: -1
223
+ - `lr_scheduler_type`: linear
224
+ - `lr_scheduler_kwargs`: {}
225
+ - `warmup_ratio`: 0.0
226
+ - `warmup_steps`: 0
227
+ - `log_level`: passive
228
+ - `log_level_replica`: warning
229
+ - `log_on_each_node`: True
230
+ - `logging_nan_inf_filter`: True
231
+ - `save_safetensors`: True
232
+ - `save_on_each_node`: False
233
+ - `save_only_model`: False
234
+ - `restore_callback_states_from_checkpoint`: False
235
+ - `no_cuda`: False
236
+ - `use_cpu`: False
237
+ - `use_mps_device`: False
238
+ - `seed`: 42
239
+ - `data_seed`: None
240
+ - `jit_mode_eval`: False
241
+ - `use_ipex`: False
242
+ - `bf16`: False
243
+ - `fp16`: False
244
+ - `fp16_opt_level`: O1
245
+ - `half_precision_backend`: auto
246
+ - `bf16_full_eval`: False
247
+ - `fp16_full_eval`: False
248
+ - `tf32`: None
249
+ - `local_rank`: 0
250
+ - `ddp_backend`: None
251
+ - `tpu_num_cores`: None
252
+ - `tpu_metrics_debug`: False
253
+ - `debug`: []
254
+ - `dataloader_drop_last`: False
255
+ - `dataloader_num_workers`: 0
256
+ - `dataloader_prefetch_factor`: None
257
+ - `past_index`: -1
258
+ - `disable_tqdm`: False
259
+ - `remove_unused_columns`: True
260
+ - `label_names`: None
261
+ - `load_best_model_at_end`: False
262
+ - `ignore_data_skip`: False
263
+ - `fsdp`: []
264
+ - `fsdp_min_num_params`: 0
265
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
266
+ - `fsdp_transformer_layer_cls_to_wrap`: None
267
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
268
+ - `deepspeed`: None
269
+ - `label_smoothing_factor`: 0.0
270
+ - `optim`: adamw_torch
271
+ - `optim_args`: None
272
+ - `adafactor`: False
273
+ - `group_by_length`: False
274
+ - `length_column_name`: length
275
+ - `ddp_find_unused_parameters`: None
276
+ - `ddp_bucket_cap_mb`: None
277
+ - `ddp_broadcast_buffers`: False
278
+ - `dataloader_pin_memory`: True
279
+ - `dataloader_persistent_workers`: False
280
+ - `skip_memory_metrics`: True
281
+ - `use_legacy_prediction_loop`: False
282
+ - `push_to_hub`: False
283
+ - `resume_from_checkpoint`: None
284
+ - `hub_model_id`: None
285
+ - `hub_strategy`: every_save
286
+ - `hub_private_repo`: None
287
+ - `hub_always_push`: False
288
+ - `gradient_checkpointing`: False
289
+ - `gradient_checkpointing_kwargs`: None
290
+ - `include_inputs_for_metrics`: False
291
+ - `include_for_metrics`: []
292
+ - `eval_do_concat_batches`: True
293
+ - `fp16_backend`: auto
294
+ - `push_to_hub_model_id`: None
295
+ - `push_to_hub_organization`: None
296
+ - `mp_parameters`:
297
+ - `auto_find_batch_size`: False
298
+ - `full_determinism`: False
299
+ - `torchdynamo`: None
300
+ - `ray_scope`: last
301
+ - `ddp_timeout`: 1800
302
+ - `torch_compile`: False
303
+ - `torch_compile_backend`: None
304
+ - `torch_compile_mode`: None
305
+ - `dispatch_batches`: None
306
+ - `split_batches`: None
307
+ - `include_tokens_per_second`: False
308
+ - `include_num_input_tokens_seen`: False
309
+ - `neftune_noise_alpha`: None
310
+ - `optim_target_modules`: None
311
+ - `batch_eval_metrics`: False
312
+ - `eval_on_start`: False
313
+ - `use_liger_kernel`: False
314
+ - `eval_use_gather_object`: False
315
+ - `average_tokens_across_devices`: False
316
+ - `prompts`: None
317
+ - `batch_sampler`: batch_sampler
318
+ - `multi_dataset_batch_sampler`: round_robin
319
+
320
+ </details>
321
+
322
+ ### Training Logs
323
+ | Epoch | Step | dev-evaluation_spearman_cosine |
324
+ |:-----:|:----:|:------------------------------:|
325
+ | 1.0 | 1 | nan |
326
+ | 2.0 | 2 | nan |
327
+ | 3.0 | 3 | nan |
328
+
329
+
330
+ ### Framework Versions
331
+ - Python: 3.10.12
332
+ - Sentence Transformers: 3.3.1
333
+ - Transformers: 4.47.1
334
+ - PyTorch: 2.5.1+cu121
335
+ - Accelerate: 1.2.1
336
+ - Datasets: 3.2.0
337
+ - Tokenizers: 0.21.0
338
+
339
+ ## Citation
340
+
341
+ ### BibTeX
342
+
343
+ #### Sentence Transformers
344
+ ```bibtex
345
+ @inproceedings{reimers-2019-sentence-bert,
346
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
347
+ author = "Reimers, Nils and Gurevych, Iryna",
348
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
349
+ month = "11",
350
+ year = "2019",
351
+ publisher = "Association for Computational Linguistics",
352
+ url = "https://arxiv.org/abs/1908.10084",
353
+ }
354
+ ```
355
+
356
+ <!--
357
+ ## Glossary
358
+
359
+ *Clearly define terms in order to be accessible across audiences.*
360
+ -->
361
+
362
+ <!--
363
+ ## Model Card Authors
364
+
365
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
366
+ -->
367
+
368
+ <!--
369
+ ## Model Card Contact
370
+
371
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
372
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4f89d628f87ade0e0b57c40affb6402cd77abc8110584d8d35dc86da514ee8
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260