SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
    'That they may keep thee from the strange woman, from the stranger which flattereth with her words.',
    'ତବେେ ତାହା ତୁମ୍ଭକୁ ଅନ୍ୟ ପର ସ୍ତ୍ରୀଠାରୁ ରକ୍ଷା କରିବ। ଏବଂ ବ୍ଯଭିଚାରିଣୀ ସ୍ତ୍ରୀଙ୍କଠାରୁ ମଧ୍ଯ ରକ୍ଷା କରିବ।',
    'ସମାନେେ ତାହା ମଧିଅରେ ନିରାପଦ ରେ ବାସ କରିବେ। ସମାନେେ ଗୃହ ନିର୍ମାଣ କରିବେ ଓ ଦ୍ରାକ୍ଷାକ୍ଷେତ୍ର ରୋପଣ କରିବେ। ମୁଁ ତା\'ର ଚତୁର୍ଦ୍ଦିଗସ୍ଥିତ ସମସ୍ତ ଦେଶକୁ ଦଣ୍ଡିତ କରିବି ଯେଉଁମାନେ ସମାନଙ୍କେୁ ତିରସ୍କାର କଲେ, ତା\'ପ ରେ ସମାନେେ ନିରାପଦ ରେ ବାସ କରିବେ, ତହିଁରେ ମୁଁ ଯେ ସଦାପ୍ରଭୁ ଓ ସମାନଙ୍କେର ପରମେଶ୍ବର ଅଟେ ଏହା ସମାନେେ ଜାଣିବେ।"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine nan
spearman_cosine nan

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 10 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 6 tokens
    • mean: 27.6 tokens
    • max: 66 tokens
    • min: 8 tokens
    • mean: 37.8 tokens
    • max: 107 tokens
    • min: 0.9
    • mean: 0.9
    • max: 0.9
  • Samples:
    sentence_0 sentence_1 label
    Am I now come up without the LORD against this place to destroy it? The LORD said to me, Go up against this land, and destroy it. ସଦାପ୍ରଭୁଙ୍କ ବିନା ମୁଁ ଏ ଦେଶ ଧଂସ କରିବାକୁ ଆସି ନାହିଁ। ସଦାପ୍ରଭୁ ମାେତେ କହିଲେ, "ଏହି ଦେଶ ବିରୁଦ୍ଧ ରେ ୟାଅ ଓ ତାକୁ ଧ୍ବଂସ କର!" 0.9
    He said that Yoga could lead to a calm, creative and content life, removing tensions and needless anxiety. ଅବସାଦ ଏବଂ ଅଯଥା ଚିନ୍ତା ଦୂର କରି ଯୋଗ ଏକ ଶାନ୍ତ, ସୃଜନଶୀଳ ଏବଂ ସାମଗ୍ରୀକ ଜୀବନ ଆଡ଼କୁ ନେଇଯାଇପାରେ । 0.9
    But that night was special. ଆଜି ରାତ୍ରିର କଥା କିନ୍ତୁ ସ୍ଵତନ୍ତ୍ର । 0.9
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step dev-evaluation_spearman_cosine
1.0 1 nan
2.0 2 nan
3.0 3 nan

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
6
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2

Evaluation results