SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2")
# Run inference
sentences = [
'That they may keep thee from the strange woman, from the stranger which flattereth with her words.',
'ତବେେ ତାହା ତୁମ୍ଭକୁ ଅନ୍ୟ ପର ସ୍ତ୍ରୀଠାରୁ ରକ୍ଷା କରିବ। ଏବଂ ବ୍ଯଭିଚାରିଣୀ ସ୍ତ୍ରୀଙ୍କଠାରୁ ମଧ୍ଯ ରକ୍ଷା କରିବ।',
'ସମାନେେ ତାହା ମଧିଅରେ ନିରାପଦ ରେ ବାସ କରିବେ। ସମାନେେ ଗୃହ ନିର୍ମାଣ କରିବେ ଓ ଦ୍ରାକ୍ଷାକ୍ଷେତ୍ର ରୋପଣ କରିବେ। ମୁଁ ତା\'ର ଚତୁର୍ଦ୍ଦିଗସ୍ଥିତ ସମସ୍ତ ଦେଶକୁ ଦଣ୍ଡିତ କରିବି ଯେଉଁମାନେ ସମାନଙ୍କେୁ ତିରସ୍କାର କଲେ, ତା\'ପ ରେ ସମାନେେ ନିରାପଦ ରେ ବାସ କରିବେ, ତହିଁରେ ମୁଁ ଯେ ସଦାପ୍ରଭୁ ଓ ସମାନଙ୍କେର ପରମେଶ୍ବର ଅଟେ ଏହା ସମାନେେ ଜାଣିବେ।"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
dev-evaluation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 10 samples:
sentence_0 sentence_1 label type string string float details - min: 6 tokens
- mean: 27.6 tokens
- max: 66 tokens
- min: 8 tokens
- mean: 37.8 tokens
- max: 107 tokens
- min: 0.9
- mean: 0.9
- max: 0.9
- Samples:
sentence_0 sentence_1 label Am I now come up without the LORD against this place to destroy it? The LORD said to me, Go up against this land, and destroy it.
ସଦାପ୍ରଭୁଙ୍କ ବିନା ମୁଁ ଏ ଦେଶ ଧଂସ କରିବାକୁ ଆସି ନାହିଁ। ସଦାପ୍ରଭୁ ମାେତେ କହିଲେ, "ଏହି ଦେଶ ବିରୁଦ୍ଧ ରେ ୟାଅ ଓ ତାକୁ ଧ୍ବଂସ କର!"
0.9
He said that Yoga could lead to a calm, creative and content life, removing tensions and needless anxiety.
ଅବସାଦ ଏବଂ ଅଯଥା ଚିନ୍ତା ଦୂର କରି ଯୋଗ ଏକ ଶାନ୍ତ, ସୃଜନଶୀଳ ଏବଂ ସାମଗ୍ରୀକ ଜୀବନ ଆଡ଼କୁ ନେଇଯାଇପାରେ ।
0.9
But that night was special.
ଆଜି ରାତ୍ରିର କଥା କିନ୍ତୁ ସ୍ଵତନ୍ତ୍ର ।
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | dev-evaluation_spearman_cosine |
---|---|---|
1.0 | 1 | nan |
2.0 | 2 | nan |
3.0 | 3 | nan |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2
Evaluation results
- Pearson Cosine on dev evaluationself-reportedNaN
- Spearman Cosine on dev evaluationself-reportedNaN